

Rossendorf 2008

Positronium zur Untersuchung weicher Materie

<u>K. Rätzke</u>, F. Faupel Lehrstuhl für Materialverbunde, Kiel University, Germany

Future work funded by DFG SPP 1369 / BMBF Nanomodule

previous work with the help of: Jan Kruse, Jörn Kanzow (PhD thesis) W. Egger, G. Kögel, P. Sperr, W. Triftshäuser (beam Munich)

Motivation: Glass Transition

Glass transition:

- change in thermal expansion
- change in molecular dynamics
- T_g time- (heating rate) dependent
- surface vs. volume vs. interface
- bulk transition vs. thin film

Epoxy systems: technological relevant, glue, load bearing, "GFK"

Positron annihilation in polymers

Why polymers? Which polymers? What can we learn from intensity and lifetime? Lifetime $\tau_3 \leftrightarrow$ volume

Surface glass transition in epoxy resins

Glass transition at the surface and in thin films

 T_g @surface smaller or larger than T_g @bulk?

Ageing in thin expoxy films

dry thermal and hydrothermal ageing change in free volume? Other changes?

Future experiments with PALS and beam

UPSCALEPIM (planned EU Project) SPP 1369 Interphases and Interfaces

The epoxy system

epoxy resin DGEBA

hardener **DETA**

Main cross-linking reactions (oxirane + amine groups):

Thin film preparation:

- Mixing, stirring 1 hour => prepolymerisation
- Solvation in methyl ethyl ketone
- Spin coating on metal substrates

Curing conditions:

48 h at room temperature+ 1 h post curing at 120 °C

4/19

• Average *free volume void sizes* determine average ortho-positronium *lifetime*

• Ortho-positronium *intensity* depends on efficiency of *electron acceptor groups*

- Surface regions/ thin films accessible by positron beam technique
 - Direct depth resolution due to monoenergetic positron beam

 $Na^{22} \rightarrow Ne^{22} + e^+$

Start-y

Positron lifetime: free volume holes

- Positron + electron \rightarrow ortho-Positronium (o-Ps)
- trapping in voids
- · decay by interaction with electrons from wall

Hole radius $r\uparrow \Rightarrow$ overlap wavefunction, $\Delta R \downarrow \Rightarrow$ decay probability $\downarrow \Rightarrow$ lifetime $\tau_3 \uparrow$

Positron beam technique for bulk epoxy resin

Glass transition T_g detectable via change in hole expansion

(reference measurement, bulk sample, equivalent to conventional technique)

Glass transition between 40 °C and 90 °C => T_q much lower than for the bulk

Concave curvature during glass transition competing processes:

low $T_q \rightarrow$ increase in lifetime

Post-curing during experiment (10 K steps, 1 h each step) → decrease in lifetime

crosscheck: \rightarrow cured sample

Increase in T_g (~ 120 °C) for intensively post-cured epoxy films => thin films behave different from bulk samples

Surface glass transition detectable for thin epoxy films!

Sample	<i>T</i> g Volume [°C]	T _g Surface [°C]
Bulk, 1h post-cured	130-135	130
5 µm, 1h post-cured	85-115	100-110
500 nm, 1h post-cured	35-90	60-65
500 nm, 27h post-cured	90-130	100-105
	PALS	XPS
• Surface and volume T_{g} of epoxy thin films detectable		
• Surface $T_g \approx$ volume T_g		
 Strong film thickness dependence (for d < 5 μm) 		

- Ortho-Positronium intensity and lifetime almost constant
- Positron implantation into Si-substrate => no positronium formation
- Epoxy surface => Less positronium formation and slight increase of lifetime (Intrinsic properties of the PALS beam technique)

500 nm epoxy film on Au substrate

Hygro-thermal (wet air with 90 % relative humidity, 40 °C, 100 days)
Thermal

(dry Ar atmosphere, 40 °C, 100 days)

J. Kanzow et al. Adhesion- Current research and applications, W. Possart (Ed.), Wiley-VCH, 465 (2005).

Ortho-Positronium intensity decreases due to *both* ageing conditions => Less positronium formation due to an increase of electron acceptor groups Indication of degradation (confirmed by other techniques)

500 nm epoxy film on Au substrate

- Hygro-thermal (wet air with 90 % relative humidity, 40 °C, 100 days)
- Thermal (dry Ar atmosphere, 40 °C, 100 days)

- Ortho-Positronium lifetime changes <=> free volume changes
- Lifetime reduced by thermal ageing => post curing
- Lifetime increased by hygro-thermal ageing => irreversible ,swelling'
- Lifetime decreased in surface-near region => free volume decrease

• Bulk and thin epoxy resins:

(Surface) glass transition can be clearly detected

Surface $T_{g} \approx$ volume T_{g}

Strong film thickness dependence (for $d < 5 \mu m$)

aged epoxy resins:

Indication of degradation thermal and (stronger) hygro-thermal ageing swelling

- Positron lifetime spectroscopy valuable tool for investigation of polymers
- Beam technique absolutely necessary for thin films / interfaces

Solid-Polymer Contacts, SPP 1369 Interfaces and Interphases Ra 796/5 Free volume distribution at polymer-solid interfaces

(PIM's: Polymers with Intrinsic Microporosity) EU project underway "UPSCALEPIM" our task, Characterisation of thin polymer layers on support

Bio adhesives

investigation of microstructure of barnacles adhesives porosity, chemical microstructure only small amounts availiable

Membrane polymers

PALS and PALS beam for materials science of thin films urgently requested

Outlook

- solid-polymer interfaces and interphases are becoming more important (nanocomposites)
- several properties related to free volume
- PALS beam technique valuable experimental tool for investigation of free volume at solid-polymer interfaces
- depth profiling of thin polymer films (comparison surface vs interface effects) and comparison with nanocomposites will give valuable information
- comparison with evaluation of modelling necessary and useful
- project will increase understanding of interphase region and influence on nanocomposites

Substrates / polymers:

Cu or Al / epoxy

 \leftrightarrow strong interaction, large interaction zone

↔ influence of interface on curing (cooperation Possart, Schiffels)

Graphite or quartz / polybutatiene

 \leftrightarrow weak interaction, small interaction zone

 \leftrightarrow comparison free volume by PALS with simulations (Binder)

Methods:

- PALS beam: planar interfaces with varying thickness, depth profile
- PALS bulk samples, Kiel: nanocomposites with varying filling factor
- Evaluation of simulations with respect to free volume, comparison

PALS and PALS beam for thin film analysis neccessary