Comparison of EPOS with other intense Positron facilities

R. Krause-Rehberg

Univ. Halle

Martin-Luther-Universität Halle-Wittenberg

- 10 reactor- or LINAC-based Positron facilities worldwide (many are under construction)
- 3 are running in regular mode (Delft, Munich, Tsukuba)
- 2 provide positron lifetime spectroscopy

NEPOMUC at FRM-II, Garching, Germany

- 5 beamlines; 4 already in use
 - ¹¹³Cd (n,γ) ¹¹⁴Cd
 - PLEPS: lifetime spectrometer is working horse
 - Concidence Doppler Broadening
 - PEAS (Positron Annihilation induced Auger Spectroscopy)
 - Positron Microscope (not installed)
 - User port
 - Financial support for EU visitors
- Problems with a magnet of a neutron experiment, time must be shared
- Febr. 08: 25 projects applied for 170 days (45 days available)

Experimental platform

- Argonne Project APosS @ Argonne National Laboratory
 - Linac: 15.5 MeV, 0.1 mA, 60 Hz, 1.5 kW
 - First positrons detected up to $3 \times 10^9 e^{-1}/s$ expected
- SOPHI Project in Saclay Mini LINAC for Gravity Experiment with Anti-H
 - Tabletop commercial accelerator: 6 MeV, 300 Hz, 0.2 mA; 10 kW
 - Under construction (solid Ne moderator possible)
 - Aim 10⁸ e⁺/s
- North Carolina State University PULSTAR Reactor
 - For the "study of nanophase in matter"
 - In US 21 university research reactors; PULSTAR power 1 MW
 - 6x10⁸ positrons/s expected in 2008

- Positron Microbeam for Transmission Positron Microscope at KEK (large Japanese Collaboration), Tsukuba, Japan
 - Linac-based positron source
 - 60 μ m diameter after remoderation
 - Continuous beam
- Positron Beam at IHEP (Inst. for High Energy Physics), Beijing China
 - Many promising activities: lifetime, AMOC, CDBS
 - Isotope and LINAC-based bunched slow positron beams
- Positron Probe Micro Analyser (PPMA) at LINAC in AIST (Tsukuba)
 - 100 μm beam (10μm expected); lifetime; 200...300 s/ pixel; 200ps FMHM expected
- Australian Positron beam Facility
 - 2 beam lines: materials science & atomic/bio/molecular
 - Materials beam line under construction; aim: bunched 200ps FWHM; 10⁷ e⁺/s

- University Delft Research Reactor Positron Source
 - Continuous positron beam
 - One user port
 - Used for ACAR (Angular Correlation of Annihilation Radiation)

Beamline > 20 m, detector distance about 2x 10m

Sample chamber

Comparison of EPOS

Advantages of EPOS

- Only pulsed positron source (<5ps pulse width at W e⁻/e⁺ converter)
- High brilliance of primary electron source (40 kW; > 10⁸ e⁺/s ecpexted)
- Full digital detector system (many advantages: no manual adjustments; pulse shape discrimination; sophisticated software CF-timing; exact time scale ...)
- Only multi-detector system so far (high count rate; better time resolution; much better peak-background ratio; possibility of coincidence detection)
- Fast access to converter chamber (in contrast to reactor-based systems)

Drawbacks

- Small experimental space in Room 111d (≈25 m²); only one experimental vacuum chamber, but all techniques for material science (lifetime, Doppler and AMOC)
- but no ACAR (but could be installed on top of cave; possibility of depth and time resolved ACAR spectrometer)
- EPOS must share time with 5 other experiments (however: 22-Na source for Doppler broadening experiments when electron beam is not available)

