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Principles of PASp

• positrons:
• thermalize• thermalize
• diffuse
• being trapped

Wh t d i• When trapped in 
vacancies:
Lifetime increases due
to smaller electron 
density in open volume
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Principles of PASp
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Principles of PAS

• Positron lifetime is measured as time difference between 1.27 MeV quantum and 

0 511 MeV quantum0.511 MeV quantum

• PM=photomultiplier, SCA=single channel analyzer (constant fraction type),

TAC time to amplitude converter MCA multi channel analyzer
5

TAC=time to amplitude converter, MCA= multi channel analyzer



Principles of PAS
Measurement of Doppler Broadening

• electron momentum in propagation direction of 511 keV γ-ray leads to
Doppler broadening of annihilation line

b d d b i l di i G d d• can be detected by conventional energy-dispersive Ge detectors and
standard electronics
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Principles of PAS
Line Shape ParametersLine Shape Parameters

•Valance annihilation  (Shape) parameter

• Core annihilation (Wing) parameter

• Both S and W are sensitive to the concentration and defect type
• W is sensitive to chemical surrounding of the annihilation site, due to
high momentum of core electrons participating in annihilation

• CDBS
2 γ-detectors (germanium) simultaneously
better energy resolution and reduced background
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better energy resolution and reduced background



Vacancies in a semiconductor

F i

Vacancies in a semiconductor may be charged

For a negative vacancy:
• Coulomb potential is rather
extended but weak

• it supports trapping only at low
temperatures

• at higher temperatures:g p
detrapping dominates and
vacancy behaves like a vacancy
in a metal or a neutral vacancyin a metal or a neutral vacancy

Positive vacancies repel positrons
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Vacancies in a semiconductor

• trapping process can be described  
quantitatively by trapping model

Positron trapping by negative vacancies

quantitatively by trapping model
• Coulomb potential leads to

Rydberg states
f th it• from there: positrons may reescape
by thermal stimulation

• once in the deep state: 
positron is captured until
annihilation

• detrapping is strongly temperaturepp g g y p
dependent 
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Vacancies in a semiconductor

• dependence of positron trapping on

Negative vacancies show temperature-dependent positron trapping

temperature is rather complex
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• low temperature: ~ T-1/2 due to limitationp
of diffusion in Rydberg states

• higher T: stronger temperature dependence
due to thermal detrapping from Rydberg state

positron trapping in negatively charged
Ga vacancies in SI-GaAs

10
Le Berre et al., 1995



Shallow positron traps

• at low T: negatively charged defects
without open volume may trap positrons
and trapping is based on the capture of
positron in Rydberg states

• “shallow” refer to small positron
binding energy

• acceptor-type impurities, negative antisitep yp p , g
defects

• annihilation parameters close to bulk
parametersparameters

• thermally stimulated detrapping can
be described by:
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Atomic diffusion mechanisms

1- Diffusion without involvement of native point defect

• Interstitially dissolved impurity
atoms diffuse by jumpingatoms diffuse by jumping
between interstitial sites

• Examples: diffusion of Li, Fe and
Cu in Si. Also Oxygen diffuse
among interstitial sites with sog
low diffusivity
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Atomic diffusion mechanisms

• In a simple vacancy exchange mechanism, substitutional atom

2. Simple Vacancy Exchange & Interstitialcy Mechanisms

In a simple vacancy exchange mechanism, substitutional atom
jumps into a neighbor vacancy on the lattice

v eqD C∝s vD    C∝

• In interstitialcy Mechanism (interstitial), the substitutional
atom is first replaced by a self-interstitial and pushed into anatom is first replaced by a self interstitial and pushed into an
interstitial position, it pushes out one of the neighbor atom in
the lattice

II eq
s ID    C∝
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Atomic diffusion mechanisms

3.2- Frank Turnbull mechanism3.1- Kick-out mechanism

3- Interstitial- Substitutional Mechanism

• closely related to interstitialcy
diffusion mechanism
f i (i i i l) i

• is qualitatively different from
vacancy exchange mechanism

iA A +I⇔

• foreign atom (interstitial) remains
for many steps

i sA +V A  ⇔

v eq
s vD    1/C∝

i sA A I⇔ i s

4- Recombination-Enhanced diffusion

h ll i d diff i f d f b h d b h f f• Thermally activated diffusion of defects may be enhanced by the transfer of
energy associated with the recombination of electrons and holes into the
vibrational modes of defects and their surrounding
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vibrational modes of defects and their surrounding
• C > Ceq induced by optical excitation or particle irradiation



Observation of vacancies during Observation of vacancies during 
Cu diffusion in GaAsCu diffusion in GaAs

• Copper is an unintentional impurity in most semiconductors

Cu diffusion in GaAsCu diffusion in GaAs

• Cu diffuses rapidly already at low temperatures

• GaAs: diffusion coefficient D = 1.1×10-5 cm2 s-1 at 500°C [1]

• Cu diffuses very fast by interstitial diffusion (kick-out process) [2]

• The solubility between 2×1016 cm-3 (500°C) and 7×1018 cm-3 (1100°C) [1]

• CuGa is a double acceptor

• work: comprehensive positron annihilation study of GaAs after Cu in-diffusion

• Experimental: 0.5 mm samples covered by 30 nm Cu, annealed at 1100 oC under
different PAs (0.2-9.68 bar), quenched in RT water and subject to isochronal annealing

[1] R.N. Hall and J.H. Racette, J. Appl. Phys. 35 (1964) 379.

[2] F.C. Frank and D. Turnball, Phys. Rev. 104 (1956) 617.
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GaAs:CuGaAs:Cu
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GaAs:CuGaAs:Cu
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GaAs:CuGaAs:Cu
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GaAs:CuGaAs:Cu
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GaAs:CuGaAs:Cu
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• P vacancy concentration dependence
GaAs:CuGaAs:Cu

 SI-GaAs
 GaAs:Si

• PAs  vacancy concentration dependence
- concentration were determined at RT with
µ= 1015 s-1

1017

n 
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m
-3
)

- different slopes for GaAs:Si and SI GaAs
- different vacancy sublattices

• Thermodynamic reactions
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- SI GaAs n= -0.24 ± 0.02



GaAs:CuGaAs:Cu
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• for e+ annihilation with Cu core e-, the
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Conclusions

• Positron annihilation is a sensitive tool for investigationg
of vacancy-like defects and their charge states in
semiconductors

• Vacancy-like defect and shallow traps were observedVacancy like defect and shallow traps were observed
• from the thermodynamics, defect complex contains VAs
• VAs is positively charged, vacancy complex containing
an As vacancy was assumedan As vacancy was assumed

• CDBS, Cu is not a constituent of the defect complex
• vacancy complex represents a native defect complex but
th t t t b tl i d f +the structure can not be exactly recognized from e+

annihilation parameters alone
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