Positronen-Annihilation: Antimaterie in der Materialforschung

R. Krause-Rehberg

Universität Halle

- methodische Einführung
- Beispiele (Halbleiter, Metalle, Nanoporen)

Physikstammtisch, Halle 20.2.2007

Positronen-Kalender

- 1928Positron durch Dirac vorhergesagt
- 1932 Positron in kosmischer Strahlung durch Anderson gefunden
- 1940ties WW von Materie mit Positrons studiert
- 1940-50 erste Studien der Elektronenstruktur mittels Winkelkorrelation
- 1950-1960 Entwicklung der Doppler-Verbreiterungs- & Lebensdauer-Spektroskopie
- 1969 Annihilationsparameter sind sensitiv für Kristalldefekte: Positroneneinfang (thermische Leerstellen in Metallen, plastische Deformation, I onenkristalle)
- 1968 Positronen Erzeugung mittels LI NAC
- 1982 Moderation von Positronen & Positronenstrahl-Systeme
- 1998 erste Positronen-Mikrosonde arbeitet

Positronenquellen

• β^+ -Zerfall: ${}^{22}Na \rightarrow {}^{22}Ne + \beta^+ + \nu_e + \gamma_{(1.27MeV)}$ (Laborquellen; Halbwertzeit: 2.6 Jahre; bis zu 10⁶ e⁺/s)

- Paarbildung mit MeV-Elektronenstrahlen (oft mit LINAC): Bremsstrahlung erzeugt Positronen; >10⁹ e⁺/s (unser Projekt einer hochintensiven gepulsten Positronenquelle am FZD in Rossendorf: EPOS)
- nukleare Reaktion: ¹¹³Cd(n,γ)¹¹⁴Cd + drei γ Quanten ⇒ Paarbildung: >10¹⁰ e⁺/s (am Forschungsreaktor-II München)

Defektnachweis mit Positronen

- Positronen-Wellenfunktion wird im Defekt lokalisiert (z.B. Leerstellen)
- Annihilationsparameter ändern sich, wenn Positron im Defekt zerstrahlt
- Defekte können nachgewiesen werden (I dentifizierung und Quantifizierung)

Theoretische Berechnung der Lebensdauer für Leerstellen-Agglomerate in Si

- es existieren bestimmte Leerstellen-Konfigurationen mit besonders hohem Energiegewinn
- "Magic Numbers": 6, 10 und 14
- Positronenlebensdauer steigt mit Cluster-Größe
- ab ca. n = 10 Sättigungs-Effekt, d.h. exakte Größe dann nicht mehr zu ermitteln

T.E.M. Staab et al., Physica B 273-274 (1999) 501

Die Messung der Positronenlebensdauer

Positronenlebensdauer: Zeitdifferenz zwischen 1.27 MeV γ -Quant (β ⁺-Zerfall) und einem 0.511 MeV γ -Quant (Annihilation)

PM=Sekundärelektronenvervielfacher; SCA=Einkanalanalysator (Constant-Fraction Typ) TAC=Zeit-Impulshöhen-Konverter; MCA= Vielkanalanalysator

Positronenlebensdauer-Spektren

- Lebensdauerspektren bestehen aus exponentiellen Zerfallstermen
- Einfang von Positronen in Defekte mit offenem Volumen führt zu langen Komponenten im Spektrum
- Spektrenanalyse wird mittels nichtlinearer Anpassroutinen durchgeführt
- Ergebnis: Lebensdauern τ_i und Intensitäten I_i

$$N(t) = \sum_{i=1}^{k+1} \frac{I_i}{\tau_i} \exp\left(-\frac{t}{\tau_i}\right)$$

Typische Lebensdauern

Positroneneinfang durch einen Defekttyp: Trapping-Modell

$$\frac{\mathrm{d}n_{\mathrm{b}}(t)}{\mathrm{d}t} = -\left(\lambda_{\mathrm{b}} + \kappa_{\mathrm{d}}\right)n_{\mathrm{b}}(t)$$
$$\frac{\mathrm{d}n_{\mathrm{d}}(t)}{\mathrm{d}t} = -\lambda_{\mathrm{d}}n_{\mathrm{d}}(t) + \kappa_{\mathrm{d}}n_{\mathrm{b}}(t)$$

Lösung ist das Zerfallsspektrum der Positronen:

$$D(t) = I_1 \exp\left(-\frac{t}{\tau_1}\right) + I_2 \exp\left(-\frac{t}{\tau_2}\right)$$

Abkürzungen:Die
$$\tau_i$$
 und I_i werden gefittet \Rightarrow Ergebnis: $\tau_1 = \frac{1}{\lambda_b + \kappa_d}$, $\tau_2 = \frac{1}{\lambda_d}$, $I_1 = 1 - I_2$, $I_2 = \frac{\kappa_d}{\lambda_b - \lambda_d + \kappa_d}$

Defekte in Ge nach Elektronenbestrahlung

- 2 MeV-Elektronenbestrahlung bei 4K induziert Frenkelpaare (Leerstellen + Zwischengitteratom)
- Ausheilstufe bei 200 K
- bei hohen Bestrahlungsdosen bilden sich Doppelleerstellen

Stress-strain experiments in Fe

- Stress-strain experiments on Fe using a standard testing machine
- measured in relaxed state
- distinct positron trapping after 80% Hooks range (fully elastic
- early stage of fatigue

Laser Hardening of Steel

- surface hardening by Laser treatment
- Laser power 1330 W, 16 mm/s
- hardening due to formation of dislocations
- positrons not sensitive to hardness itself, but to microdefects

(Somieski et al., 1996)

Informationstiefe der Positronen-Messung

- Positronen aus β⁺ -Zerfall: breites Emission-Spektrum bis 540 keV
- tiefe I mplantation in Probe
- ungeeignet f
 ür Untersuchung d
 ünner Schichten
- monoenergetische Positronen nötig
- Moderation mittels Metallfolien

Moderation von Positronen

Effektivität der Moderation: $\approx 10^{-4}$

Das Positronen-Strahlsystem in Halle

- Spot Durchmesser: 5mm
- Zeit für eine Doppler-Messung: 20 min
- Zeit für Tiefenscan: 8 h

Defects in Si induced by Ion Implantation

- ion implantation is most important doping technique in planar technology
- main problem: generation of defects \Rightarrow positron beam measurements

Laterale Auflösung mittels Positronen-Raster-Mikroskop

- monoenergetische Positronen durch Moderation
- laterale Auflösung ca. 2 µm
- Lebensdauer-Messung möglich
- Auflösung prinzipiell durch
 Positronendiffusion limitiert
 (ca. 100nm)

W. Triftshäuser et al., NIM B 130 (1997) 265

Mikrohardness indentation in GaAs

 Comparison of SEM and Munich Positron Scanning Microscope; problem here at the moment: intensity

Positrons & Positronium

In materials without free electrons Positronium may be formed (Polymers, glass, liquids, gases).

Pick-off Annihilation of o-Ps

pick-off annihilation

- o-Ps is converted to p-Ps by capturing an electron with anti-parallel spin
- happens during collisions at walls of pore
- lifetime decreases rapidly
- lifetime is function of pore size 1 ns ... 142 ns

Porous Glass

- we measured porous glass in a broad pore size range
- pore size obtained by
 N₂-adsorption method
- for T=300 K general agreement to the RTE model
- calibration curve for the correlation of o-Ps lifetime and pore size

Applications of Positron Annihilation

Variety of applications in all field of materials science:

- defect-depth profiles due to surface modifications and ion implantation
- tribology (mechanical damage of surfaces)
- polymer physics (pores; interdiffusion; ...)
- low-k materials (thin high porous layers)
- defects in semiconductors, ceramics and metals
- epitaxial layers (growth defects, misfit defects at interface, ...)
- fast kinetics (e.g. precipitation processes in AI alloys; defect annealing; diffusion; ...)
- radiation resistance (e.g. space materials)
- many more ...

