Digital positron lifetime spectroscopy at EPOS

Arnold Krille¹ Reinhard Krause-Rehberg¹ Marco Jungmann¹ František Bečvář² Gerhard Brauer³

¹Department of Physics, Martin-Luther-University Halle-Wittenberg

²Department of Low-Temperature Physics, Charles University Prague

³Institute of Ion Beam Physics and Materials Research, Research Center Dresden-Rossendorf

July 10th, 2007 - SLOPOS 11

EPOS in a nutshell Special needs for EPOS Replacing analog equipment with digital devices

Contents

1 Contents

- EPOS in a nutshell
- Special needs for EPOS
- Replacing analog equipment with digital devices

2 Comparison of different methods

- Simple Polynom Interpolation
- Spline Interpolation
- Integration of pulses and Polynom Int.
- Signed Integration and Polynom Int.

3 Conclusion

- Comparing the results
- Literature, Links, Thanks

EPOS in a nutshell Special needs for EPOS Replacing analog equipment with digital devices

EPOS in a nutshell

- ELBE at FZ Dresden-Rossendorf is a pulsed electron beam
- EPOS tries to create a pulsed positron beam by pair-production
- Positron beam is bunched and chopped to have a sharper pulse
- Positron annihilation in the sample is detected by
 - 4 pairs of detectors in coincidence for lifetime
 - one pair of Ge-detectors for Doppler- and AMOC-measurements

EPOS in a nutshell Special needs for EPOS Replacing analog equipment with digital devices

Special needs for EPOS

- All calculations done online (Saving the raw-data only for debugging/testing)
- Server stores only the final spectrum
- Easy extensions via exchangable plugins
- Total control on the whole lab and experiment via pc
- Preparation of experiments and fetching of results via internet

EPOS in a nutshell Special needs for EPOS Replacing analog equipment with digital devices

Replacing analog equipment with digital devices

Replacing the standard analog equipment...

...with digitizers (4GS/s 8bit) and computers.

EPOS in a nutshell Special needs for EPOS Replacing analog equipment with digital devices

Replacing analog equipment with digital devices

Problems with digitalization

- Conversion from continuous signal to discrete signal
- Both on time and amplitude
- Interpolation is needed between the discrete points
- Noise of the adc and time-jitter are serious problems

Simple Polynom Interpolation Spline Interpolation Integration of pulses and Polynom Interpolation Signed Integration and Polynom Interpolation

Comparison of different methods

Task

To find the best interpolation- and extraction-method for digital lifetime measurements.

Simple Polynom Interpolation Spline Interpolation Integration of pulses and Polynom Interpolation Signed Integration and Polynom Interpolation

Comparison of different methods

Doing the tests:

- One raw-dataset of ⁶⁰Co spectrum for all tests
- Obtained by Acqiris DC211, 4GS/s 1GHz bandwidth, 8bit resolution (6.5bit effective)
- Same windows for all tests (-0.8V -0.1V)
- \sim 150 000 events in total
- Minimum of the pulses obtained via 2nd- or 3th-order polynom-fit.
- EODE (Epos Offline Data Evaluation) allows for different modules to be exchanged at run-time

 \Rightarrow only the relevant parts in the process are changed.

Simple Polynom Interpolation Spline Interpolation Integration of pulses and Polynom Interpolation Signed Integration and Polynom Interpolation

Comparison: Simple Polynom Interpolation

- Constant fraction between baseline and extremum simply by interpolation with polynom of *N*th-order
- 3th-order interpolation proves useful and without too much overhead
- FWHM with constant fraction of 30%: 174.84ps

Simple Polynom Interpolation Spline Interpolation Integration of pulses and Polynom Interpolation Signed Integration and Polynom Interpolation

Comparison: Averaging and Polynom Interpolation

- Averaging the sampled data + polynom fit afterwards reduces effect of digitizer noise
- FWHM with constant fraction of 30%: 172.08ps
- FWHM of 167ps with some mathematical tricks.

Simple Polynom Interpolation Spline Interpolation Integration of pulses and Polynom Interpolation Signed Integration and Polynom Interpolation

Comparison: Spline Interpolation

- Interpolation at constant fraction point by Spline-Interpolation
- FWHM with constant fraction of 30%: 172.43ps

Simple Polynom Interpolation Spline Interpolation Integration of pulses and Polynom Interpolation Signed Integration and Polynom Interpolation

Comparison: Averaging and Spline Interpolation

- Averaging the sampled data first
- followed by spline-interpolation of the constant fraction point
- FWHM with constant fraction of 30%: 171.08ps

Simple Polynom Interpolation Spline Interpolation Integration of pulses and Polynom Interpolation Signed Integration and Polynom Interpolation

Comparison: Integration of pulses and Polynom Int.

- Integrating the pulse
- Constant fraction on the integrated pulse by interpolation with polynom of Nth-order
- FWHM with constant fraction of 20%: 184.35ps

Simple Polynom Interpolation Spline Interpolation Integration of pulses and Polynom Interpolation Signed Integration and Polynom Interpolation

Comparison: Signed Integration and Polynom Int.

- Integrating the pulse, signed by difference from previous sample
 ⇒ Results in pulses instead of rising slope
- Constant fraction on the integrated pulse by interpolation with polynom of Nth-order
- FWHM with constant fraction of 50%: 75.61ps

Simple Polynom Interpolation Spline Interpolation Integration of pulses and Polynom Interpolation Signed Integration and Polynom Interpolation

Comparison: Signed Integration and Polynom Int.

But:

- Integrating the pulse, signed by difference from previous sample ⇒ Results in pulses instead of rising slope
- Constant fraction on the integrated pulse by interpolation with polynom of *N*th-order
- FWHM with constant fraction of 50%: 75.61ps

Spectrum contains several maxima!

Conclusion: Comparing the results

Method	Resolution
Analog measurements	our lab: >200ps
Polynom-Int.	[Becvar, 2004] 4GS/s 1GHz 8bit: 130ps own: ~170ps
Gauss-Int.	[Aavikko 2005] 4GS/s 1GHz 8bit: 200ps
(Smoothing) Spline	[Saito, 2001] 4GS/s 1GHz 8bit: 118ps - 144ps [Bardelli, 2004] 100MS/s 50MHz 12bit: 100ps - 125ps own: ~170ps
Integral CF	Bečvář, Prague: ~100ps own: ~185ps
Signed Integral CF	own: ~75ps but not working right :-(

Comparing the results Literature, Links, Thanks

Conclusion: Literature, Links, Thanks

Thanks for your attention!

Get the slides at http://positron.physik.uni-halle.de/.

J. Nissilä, K. Rytsölä, R. Aavikko, A. Laakso, K. Saarinen, P. Hautojärvi Performance analysis of a digital positron lifetime spectrometer

NIM A 538 (2005) 778-789

F. Bečvář, J. Čížek, I. Procházka, J. Janotová

The asset of ultra-fast digitizers for positron-lifetime spectroscopy NIM A 539 (2005) 372-385

H. Saito, Y. Nagashima, T. Kurihara, T. Hyodo

A new positron lifetime spectrometer using a fast digital oscilloscope and BaF₂ scintillators NIM A 487 (2002) 612-617

L.Bardelli, G. Poggi, M. Bini, G. Pasquali, N. Taccetti

Time measurements by means of digital sampling techniques: a study case of 100ps FWHM time resolution with a 100 MS/s 12 bit digitizer NIM A 521 (2004) 480-492