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1.1 Introduction

Percolation is a standard model for disordered systems. Its applications range from trans-
port in amorphous and porous media and composites to the properties of branched poly-
mers, gels and complex ionic conductors. Because of universality the results do not depend
on the specific model, and general scaling laws can be deduced. In the first part of this
chapter we give a short introduction to percolation theory and describe one application
to composites. We start with the structural properties of percolation clusters and their
substructures at criticality. Then we turn to the dynamical properties of percolation clus-
ters and discuss the way the laws of diffusion and conduction are modified on percolation
structures. Finally, we review a particular application of the percolation concept, ionic
diffusion in dispersed ionic conductors.

In the second part of the chapter, electrical conduction in laser-irradiated polymers
will be discussed by R. Sauerbrey and E. Welsch.

1.2 The (site-)percolation model

Percolation represents the basic model for a structurally disordered system (for recent
reviews see [1,2], for applications see [3]). Let us consider a square lattice, where each
site is occupied randomly with probability p or is empty with probability 1 — p (see
fig. 1). Occupied and empty sites may stand for very different physical properties. For
illustration, let us assume that the occupied sites are electrical conductors, the empty sites
represent insulators, and that electrical current can only flow between nearest-neighbour
conductor sites.

At low concentration p, the conductor sites are either isolated or form small clusters
of nearest-neighbour sites. Two conductor sites belong to the same cluster if they are
connected by a path of nearest-neighbour conductor sites, and a current can flow between
them. At low p values, the mixture is an insulator, since no conducting path connecting
opposite edges of our lattice exists. At large p values on the other hand many conducting
paths between opposite edges exist, where electrical current can flow, and the mixture
is a conductor. At some concentration in between, therefore, a threshold concentration
pe must exist where for the first time electrical current can percolate from one edge to
the other. Below p. we have an insulator, above p. we have a conductor. The threshold
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Figure 1 Site percolation on the square lattice: The small circles represent the occupied sites
for three different concentrations: p = 0.2, 0.59, and 0.80. Nearest-neighbour cluster sites are
connected by lines representing the bonds. Filled circles are used for finite clusters, while open
circles mark the large infinite cluster.

concentration is called the percolation threshold, or, since it separates two different phases,
the critical concentration.

If the occupied sites are superconductors and the empty sites are conductors, p. sepa-
rates a normal-conducting phase below p. from a superconducting phase above p.. An-
other example is a mixture of ferromagnets and paramagnets, where the system changes
at p. from paramagnetic to ferromagnetic.

In contrast to the more common thermal phase transitions, where the transition be-
tween two phases occurs at a critical temperature, the percolation transition described
here is a geometrical phase transition, which is characterized by the geometric features
of large clusters in the neighbourhood of p.. At low values of p only small clusters of oc-
cupied sites exist. When the concentration p is increased the average size of the clusters
increases. At the critical concentration p. a large cluster appears which connects oppo-
site edges of the lattice. We call this cluster the infinite cluster, since its size diverges in
the thermodynamic limit. When p is increased further the density of the infinite cluster
increases, since more and more sites become part of the infinite cluster, and the average
size of the finite clusters, which do not belong to the infinite cluster, decreases. At p = 1,
trivially, all sites belong to the infinite cluster.

The critical concentration depends on the details of the lattice and increases, for fixed
dimension d of the lattice, with decreasing coordination number z of the lattice: For the
triangular lattice, z = 6 and p. = 1/2, for the square lattice, z = 4 and p, = 0.592746,
and for the honeycomb lattice, z = 3 and p. = 0.6962. For fixed z, p. decreases if the
dimension d is enhanced. In both the triangular lattice and the simple cubic lattice we
have z = 6, but p. for the simple cubic lattice is considerably smaller, p. = 0.3116.

The percolation transition is characterized by the geometrical properties of the clusters
near p. [1,2]. The probability P, that a site belongs to the infinite cluster is zero below
pe and increases above p. as

Py ~ (p—pc)”. (1)

This behaviour is illustrated in fig. 2. The linear size of the finite clusters, below and
above p., is characterized by the correlation length . The correlation length is defined



Introduction to Percolation Theory (Part A) 3

108 ; 1
\ /R
3 | P,
€ | \&
0 \ 0
0 D R 1

Figure 2 Schematic diagram of the probability Ps (eq. (1), bold line) and the correlation
length ¢ (eq. (2), thin line) versus the concentration p of occupied sites.

as the mean distance between two sites on the same finite cluster and represents the
characteristic length scale in percolation. When p approaches p., £ increases as

E~lp—pc|™", (2)

with the same exponent v below and above the threshold (see also fig. 2). While p,
depends explicitly on the type of the lattice, the critical exponents 8 and v are universal
and depend only on the dimension d of the lattice, but not on the type of the lattice.
The values of the critical exponents are given in table 1 for two and three dimensions.

1.3 The fractal structure of percolation clusters near p,.

Near p. on length scales smaller than £ both the infinite cluster and the finite clusters
are self-similar, i.e., if we cut a small part out of a large cluster, magnify it to the original
cluster size and compare it with the original, we cannot tell the difference: Both look
the same. This feature is illustrated in fig. 3, where a large cluster at p. is shown in four
different magnifications. We leave it to the reader to find out what is the original and
what are the magnifications.

Table 1 Critical exponents and fractal dimensions for percolation in two and three dimensions.
The numerical values are taken from [1].

Quantity Exponent d=2 d=3
Order parameter | Poo(p) ~ (p — pc)P B 5/36 0.417 £+ 0.003
Correlation length | £(p) ~|p —pe |7 v 4/3 0.875 £ 0.008
Cluster mass M(r) ~ris ds 91/48 2.524 £ 0.008
Backbone mass Mg(r) ~ ris dp 1.62+0.02 | 1.855 £ 0.015
Chemical Path L(r) ~ pdmin dmin 1.134+0.004 | 1.374 £ 0.004
Random Walk (r2(t)) ~ 3/ dw 2.871+0.001 | 3.80 +0.02
Conductivity o4c(p) ~ (p. — p)* ,LL 1.30+£0.002 | 1.99 +0.01
Superconductivity | os(p) ~ (p — p.)~* s 1.30 £ 0.002 | 0.74 +0.03
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Figure 3 Self-similarity of a large percolation cluster on the square lattice at the critical
concentration. Three of the clusters are magnifications of the center parts marked by white
squares.

We have learnt in chapter 13 that — as a consequence of the (non-trivial) self-similarity —
the cluster is characterized by a “fractal” dimension, which is smaller than the dimension
d of the embedding lattice. The mean mass of the cluster within a circle of radius r
increases with r as

M(T) ~ Tdf: r<L¢, (3)

with the “fractal dimension” dy. The numerical values of dy can be found in table 1. Above
pe on length scales larger than ¢ the infinite cluster can be regarded as an homogeneous
system which is composed of many cells of size £. Mathematically, this can be summarized
as
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rdr, if r K&,
M(r)~{ o ()
r¢ ifr > €.

The fractal dimension dy can be related to 8 and v in the following way: Above pe,
the mass M, of the infinite cluster in a large lattice of size L? is proportional to L?P,,.
On the other hand, this mass is also proportional to the number of unit cells of size &,
(L/€)?, multiplied by the mass of each cell which is proportional to £%7. This yields (with
egs. (1) and (2))

Moo ~ LPog ~ L (p — pc)? ~ (L/€)%€Y ~ L (p — pe)* "%, (5)

and hence, comparing the exponents of (p — p.),

df:d—g. (6)

Since § and v are universal exponents, dy is also universal.

A fractal percolation cluster is composed of several fractal substructures, which are
described by other exponents [1,2]. Imagine applying a voltage between two sites at
opposite edges of a metallic percolation cluster: The backbone of the cluster consists of
those sites (or bonds) which carry the electric current. The topological distance between
both points (also called chemical distance) is the length of the shortest path on the
cluster connecting them. The dangling ends are those parts of the cluster which carry
no current and are connected to the backbone by a single site only. The red bonds (or
singly connected bonds), finally, are those bonds that carry the total current; when they
are cut the current flow stops.

The fractal dimension dp of the backbone is smaller than the fractal dimension dy of
the cluster, reflecting the fact that most of the mass of the cluster is concentrated in the
dangling ends. On the average, the topological length £ of the path between two points on
the cluster increases with the Euclidian distance r between them as £ ~ r®i». The values
of the fractal dimensions dp and dp,;, are given in table 1 for two and three dimensions.
The fractal dimensions of the red bonds d,eq are known from exact analytical arguments.
The mean number of red bonds varies with p as fireqa ~ (p — pe) " ~ /¥ ~ r/¥, and
the fractal dimension of the red bonds is therefore dyeq = 1/v [1].

A further important substructure of the cluster is the external perimeter (which is
also called the hull). The hull consists of those sites of the cluster which are adjacent to
empty sites and are connected with infinity via empty sites. It is an important model for
random fractal interfaces. In two dimensions, the hull has the fractal dimension dj, = 7/4,
while its mass seems to be proportional to the mass of the cluster in d = 3, i.e. d, = dj.
In contrast to the hull, the total perimeter also includes the holes in the cluster.

1.4 Further percolation systems

So far we have considered site percolation, where the sites of a lattice have been occupied
randomly. When the sites are all occupied, but the bonds between the sites are randomly
occupied with probability g, we speak of bond percolation (see fig. 4a). Two occupied
bonds belong to the same cluster if they are connected by a path of occupied bonds, and
the critical concentration ¢. of bonds (g, = 1/2 in the square lattice and g. ~ 0.2488 in
the simple cubic lattice) separates a phase of finite clusters of bonds from a phase with
an infinite cluster [1,2].
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Figure 4 Further percolation systems: (a) Bond percolation cluster on a square lattice and
(b) continuum percolation of circular discs with fixed radius at the percolation threshold.
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If sites are occupied with probability p and bonds are occupied with probability ¢, we
speak of site—bond percolation. Two occupied sites belong to the same cluster if they are
connected by a path of nearest-neighbour occupied sites with occupied bonds in between.
For ¢ = 1, site-bond percolation reduces to site percolation, for p = 1 it reduces to bond
percolation. In general, both parameters characterize the state of the system. Accordingly,
a critical line in (p,q) space separates both phases, which for p = 1 and ¢ = 1 takes the
values of the critical bond and site concentrations, respectively.

Perhaps the most common example of bond percolation in physics is a random resistor
network, where the metallic wires in a regular network are cut randomly with probability
1 — q. Here ¢, separates a conductive phase at large ¢ from an insulating phase at low
q. A possible application of bond percolation in chemistry is the polymerization process,
where small branching molecules can form large molecules by activating more and more
bonds between them. If the activation probability ¢ is above the critical concentration, a
network of chemical bonds spanning the whole system can be formed, while below g. only
macromolecules of finite size can be generated. This process is called a sol-gel transition.
An example of this gelation process is the boiling of an egg, which at room temperature
is liquid and upon heating becomes a more solid-like gel. Site-bond percolations can be
relevant for gelation in dilute media.

The most natural example of percolation is continuum percolation, where the positions
of the two components of a random mixture are not restricted to the discrete sites of a
regular lattice. As a simple example, consider a sheet of conductive material, with circular
holes punched randomly in it (see fig. 4b). The relevant quantity now is the fraction p
of remaining conductive material. Compared with site and bond percolation, the critical
concentration is further decreased: p. = 0.312 for d = 2, when all circles have the same
radius. This picture can easily be generalized to three dimensions, where spherical voids
are generated randomly in a cube, and p. = 0.034. Due to its similarity to Swiss cheese,
this model of continuous percolation is called the Swiss cheese model. Similar models,
where also the size of the spheres can vary, are used to describe sandstone and other
porous materials.
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Figure 5 Random walk on a square lattice. The lattice constant a = 1 is equal to the jump
length of the random walker. Sixteen steps of the walk are shown.

It is important that close to the percolation threshold all these different percolation
systems are characterized by the same critical exponents 3, v, and dy given in table 1.
The exponents are universal and depend neither on the structural details of the lattice
(e.g., square or triangular) nor on the type of percolation (site, bond, or continuum), but
only on the dimension d of the lattice.

1.5 Diffusion on regular lattices

After we have discussed the structural properties of percolation systems close to the per-
colation threshold, we will now focus on the dynamical properties of percolation systems,
where to each site or bond a physical property such as conductivity is assigned. We show
that due to the fractal nature of the percolation clusters near p., the physical laws of
dynamics are changed essentially and become anomalous.

At first, we consider regular lattices. The diffusion process is commonly modeled by
a simple random walk (see e.g., chapters 12 and 13), which advances one step of length
a in one time unit. Each step brings the random walker to a randomly chosen nearest-
neighbour site on a given d-dimensional lattice. Assume that the walker starts at time
t = 0 at the origin of the lattice. After ¢ time steps, the actual position is described by
the vector (see fig. 5)

¢
r(t) =a Z er, (7
T=1

where e, denotes the unit vector pointing in the direction of the jump at the rth time
step.

The mean distance the random walker has travelled after ¢ time steps is described by
the root mean square displacement R(t) = (r?(t))'/2, where the average (- --) is over all
random-walk configurations on the lattice. From eq. (7) we obtain

t

(rP)=a> Y (er-en)=a’t+ > (er-en). (8)

7,7’ =1 T#T'
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Since jumps at different steps 7 and 7' are uncorrelated, we have (e, - e,) = ..+, and
we obtain the Einstein relation

(r’(t)) = a’t, 9)

which is equivalent to Fick’s first law (see section 6.2). Note that eq. (9) is independent
of the dimension d of the lattice.

In the general case, when the lengths of the steps of the random walker may vary,
eq. (9) is modified into

(r?(t)) = 2dDt, (10)

where D is the diffusion coefficient. The diffusion coefficient is (approximately) related
to the dc conductivity oqc by the Nernst-Einstein equation,

oac = n(e?/kgT)D, (11)

where n is the density and e the charge of the diffusing particles.

A more complete description of the diffusion process is possible with the probability
density P(r,t), where P(r,t)dr is the probability of finding the walker after ¢ time steps
at a site within distance r from its starting point. The mean square displacement can
be obtained from P(rt) via (r?(t)) = [drr?P(rt). For t > r, P(r,t) is described by
a Gaussian: P(rt) = %ﬂe*ﬁ/ 2t This ‘normal’ probability density characterizes the
diffusion on regular lattices. Next we consider disordered structures.

1.6 Diffusion on percolation clusters

We start with the infinite percolation cluster at the critical concentration p.. The cluster
has loops and dangling ends, and both substructures slow down the motion of a random
walker. Due to self-similarity, loops and dangling ends occur on all length scales, and
therefore the motion of the random walker is slowed down on all length scales. The time
t the walker needs to travel a distance R is no longer, as in regular systems, proportional
to R2, but scales as t ~ R%, where d,, > 2 is the fractal dimension of the random
walk [1,2]. For the mean-square displacement this yields immediately

(r2(t)) ~ /. (12)

The fractal dimension d,, is approximately equal to 3ds/2 [4]; the results of numerical
simulations can be found in table 1. For continuum percolation (Swiss cheese model)
in d = 3, dy is enhanced: d,, = 4.2 [5]. Diffusion processes described by eq. (12) are
generally referred to as anomalous diffusion (cf. chapter 6).

The probability density (P(r,t))n, averaged over N percolation clusters, is not so easy
to calculate. Analytical expressions for (P(rt))n that fully describe the data obtained
from numerical simulations can be derived. The derivation is beyond the scope of this
book and we refer the interested reader to [1,6].

Comparatively simple, however, is the scaling behaviour of (P(0,t)), which denotes the
probability of being, after ¢ time steps, at the site where the random walker started. Since
for very large times each site has the same probability of being visited, the probability
of being at the origin is proportional to the inverse of the number of distinct sites S(t)
the random walker visited. Since S(t) increases with R(t) = (r?(t))'/? as S(t) ~ R(t)%,
we have
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Figure 6 Schematic diagram of the (usual) dc conductivity 4. (eq. (15), bold line) and the
conductivity og for a conductor-superconductor percolation network (eq. (20), thin line for
p < pc) versus the concentration p of occupied sites. The cluster capacitance C is proportional
to os for p < p. and diverges with the same exponent for p > p. (see eq. (25)).

(P(0,t)) ~ R(t)" % ~ t=dr/dw (13)

(see also section 13.3).

Above p,, fractal structures occur only within the correlation length £(p) from eq. (2).
Thus the anomalous diffusion law, eq. (12), occurs only below the corresponding crossover
time t¢ ~ R(t¢)% ~ €%, which decreases proportional to (p — p.) 7%, if p is further
increased. Above t¢, on large time scales, the random walker explores large length scales
where the cluster is homogeneous, and (r?(t)) follows Fick’s law (egs. (9) or (10)) in-
creasing linearly with time ¢. Thus,

2/dw  ift <t
(r2 (1)) ~ » BE<le (14)
¢, if ¢ > t.

1.7 Conductivity of percolation clusters

The diffusion coefficient is related to the dc conductivity o4c by the Nernst-Einstein
equation, eq. (11). Below p., there is no current between opposite edges of the system,
and o4c = 0. Above p., g4 increases by a power law (see fig. 6 for illustration),

oac ~ (p —p)", (15)

where the critical exponent p is (semi)-universal. For percolation on a lattice, u depends
only on d; the numerical results are contained in table 1. For continuum percolation
(Swiss cheese model) in d = 3, however, y is enhanced: p = 2.38.

Combining egs. (11) and (15), we can obtain the behaviour of the diffusion coefficient
D as a function of p — p.. Since only the particles on the infinite cluster contribute to
the dc conductivity, we have (from eq. (1)) n ~ Py ~ (p — p.)? in eq. (11). This yields

D~ (p—p)". (16)

Next we use scaling arguments to relate the exponent u to d,,. Equations (16) and (10)
imply that above t¢, the mean-square displacement (r?(t)) behaves as

(@) ~ (p—pe)* Ot, t>te. (17)
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On the other hand we know that for times below ¢, on distances r < té/ .

(r2(t)) ~ 2/t <t (18)

By definition, for ¢ = t¢, we have (r?(t)) ~ £2. Substituting this into eqs. (17) and
(18) and equating both relations we obtain immediately (p — p.)* Pte ~ tz/ 4w Using
te ~ &% ~ (p—pe) V% (from eq. (2)) we get the relation between u and d,,,

dy =2+ (u—B)/v. (19)

1.8 Further electrical properties

In the last subsection we have already seen that the dc conductivity in the conductor-in-
sulator system is zero below p. and increases with a power law above p.. If we consider,
instead, the corresponding superconductor-conductor system, the conductivity is infinite
above p, and diverges with a power law when approaching p. from below (see fig. 6),

os ~ (pc—p) °. (20)

The numerical results for s can be found in table 1.

Next, for generalizing this result and for obtaining further electric properties, let us as-
sume that each bond in the network represents (with probability p) a circuit consisting of
a resistor with resistivity 1/0% and a capacitor with capacitance C, or (with probability
1 — p) a circuit consisting of a resistor with resistivity 1/0% and a capacitor with capac-
itance C'z. The (complex) conductivity of each bond is therefore either o4 = 0% —iwCa
or ogp = a% — iwCpg. This model is called equivalent circuit model. At the percolation
threshold the total conductivity follows a power-law [1,7,8],

o(w) =oal0a/oB)™", (21)
where the exponent

u=p/(n+s) (22)

is related to the exponents y and s from above, u =0.5ind=2and u =2 0.71ind =3
(see table 1).

For extending this result to the critical regime below and above p., we multiply eq. (21)
by a complex scaling function S(z) that depends on z = |p — p.|(ca/op)® and can be
different above and below p, [9,10],

o(w) =oa(oa/os)™"  Sllp = pel(oa/op)®]. (23)

The exponent & as well as the asymptotic behaviour of the scaling function is determined
by the asymptotic behaviour of o(w) in the limit w — 0 and (c4/0p) — 0.

In the following, let us concentrate on the conductor-capacitor limit, where o4 =
0% and op = —iwCp. Then the complex scaling variable z is proportional to |p —
pe|[0%/(=iwCB)]® ~ (Tw)~%, and T = |[p—p.| " /®Cp /0 defines the characteristic time
scale in this short-circuit model. Splitting the complex function (—i)*S(z) into its real
part S; and imaginary part Sz, we obtain for the complex conductivity

o(w) = 0% (Cr/a%)" - w" - [S1(Tw)] + iS2(Tw)], (24)
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Figure 7 (a) Specific conductivity of the Li-Al, O3 system as a function of the mole fraction p of
Al>03 at different temperatures (after [11]). (b) Total conductivity resulting from Monte-Carlo-
Simulations of the two-phase percolation model, as a function of p, for 69 /o% = 10 (circle), 30
(full square), and 100 (triangle) (after [15]).

where S; and Sy are real functions.

According to standard electrodynamics, in the limit of w — 0 the real part of the

complex conductivity tends to o4c, while the imaginary part becomes —wC', with C' the
capacitance of the whole system:

o(w) = {"df —wC P> pe L), (25)

—iwC, if p < pe

For satisfying these conditions, we must require that S;(tw) ~ (rw)™* above p. and
So(Tw) ~ (Tw)!~* below and above p.. The first condition determines, together with
egs. (15) and (22), the scaling exponent ®, ® = 1/(u + s). The second condition yields
the new relation for the capacitance [1,9,10],

C ~ Sp(1w) ~ |p = pe|“V/® = [p — pc| %, (26)

with the same exponent s below and above p. (see fig. 6). The divergency of C' at p. has
a simple physical interpretation: each pair of neighboured clusters forms a capacitor. The
effective surface increases when p,. is approached and tends to infinity at p.. Accordingly,
the effective capacitance C of the system also diverges. Next, we discuss a (non-trivial)
application of the percolation concept, the ionic transport in dispersed ionic conductors.

1.9 Application of the percolation concept: dispersed ionic conductors

Mixtures of solid ionic conductors (e.g. S-Agl or Lil) with fine particles of an insulating
second phase (e.g. Al;O3 or SiO,) can show a marked increase in conductivity as com-
pared to the pure homogeneous system. The ionic conductivity first increases strongly
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Figure 8 Illustration of the two-phase percolation model on a square lattice for different con-
centrations p of the insulating material represented by the grey regions. The highly conducting
bonds are marked by bold lines. (a) p < p, (b) p = p, (c) p = p,;, and (d) p > p. (redrawn
after [15]).

with the concentration p of the dispersed insulating phase. After passing its maximum,
the conductivity drops rapidly and seems to approach zero at some larger concentration.
The effect is more pronounced as the temperature is lowered [11] (see fig. 7a). The discov-
ery of this remarkable phenomenon is due to Liang [12], who observed an enhancement by
three orders of magnitude in the Li conductivity of Lil after addition of AloO3 particles.

It has been shown experimentally for sandwich arrangements of the composites that the
interface conductivity between the two phases is strongly enhanced. This enhancement is
supposed to be due to the formation of a space charge layer along the internal interfaces
[13].

This experimental fact leads to the assumption that the composites can be described
as three-component system [14-17] consisting of a matrix of bonds that can be either
insulating (representing the interior of the insulating particles), normally conducting with
conductivity 0% (representing the normal conducting bonds), or highly conducting with
conductivity 09 > 0% (representing the interface bonds). The bonds are distributed in
space according to a random distribution of insulating material in a normally conducting
matrix with a highly conducting interface in between. We shall assume that ¢4 and
0% are thermally activated, such that the ratio 0% /0% o exp(AE/kpT) increases with
decreasing temperature.

Figure 8 shows an illustration of the model on an hypothetical square lattice, for four
different concentrations p of the insulating material. For very small p values (fig. 8a) few
highly conducting bonds occur and the total conductivity is still dominated by the normal
conducting bonds. At some larger p value (fig. 8b) there exists a critical concentration p/,
where for the first time an “infinite” network of highly conducting interface bonds devel-
ops ( “interface percolation”). For increasing p, the total conductivity increases drastically,
since it is now governed by the highly conducting bonds. If we increase p further, we ar-
rive at a second critical concentration p! where all conduction paths become disrupted
(fig. 8c). Above p! (fig. 8d), the total conductivity is zero.

Figure 7b shows the results of computer simulations [15] of the total conductivity, car-
ried out on a simple cubic matrix of bonds, for three different temperatures (¢% /0%=10,
30, and 100). The result compares well with the experimental curve.

Apart from this, the two-phase model is able to reproduce the experimental results
for the activation energy as a function of p [18] and the dependence of the specific
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conductivity on the size of the dispersed particles [16]. A modified percolation model [17]
suggests a cusp in the static effective capacitances.

1.10 Conclusion

In this chapter we gave a short introduction to the standard model for disordered systems,
the percolation model. Percolation clusters at the critical concentration are self similar
on all length scales and their structure as well as several substructures can be described
by fractal geometry. Because the clusters have loops and dangling ends on all length
scales diffusion processes on these structures are slowed down on all length scales and
become anomalous. Diffusion is related to electrical conductivity via the Nernst-Einstein
relation, and thus the scaling behaviour of the dc conductivity can be deduced from it.
Other scaling arguments give the dependence of the capacitance on the concentration of
conducting sites, and show that the capacitance diverges at the percolation threshold. In
the last section, we discussed an application of the percolation concept, ionic transport
in dispersed ionic conductors.

1.11 Notation

P, q concentration of occupied sites, resp. bonds egs. 1, 2, 15, 20, 26
P, concentration of sites from the infinite cluster eq. 1

£ correlation length eq. 2

M cluster mass egs. 3, 4

r, £ Euclidian and topological (chemical) distance

R(t) =

(r2(t))*/? root mean square displacement of random walk  egs. 8, 9, 10
P(r;t) probability density of random walk eq. 13

D diffusion coefficient egs. 10, 11, 16
Ode dc conductivity egs. 11, 15

os conductivity in conductor-superconductor system eq. 20

C capacitance eq. 26
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