

Helmholtz-Institut für Strahlen - und Kernphysik Nussallee 14 - 16 53173 Bonn Germany

Positron Microbeams and their applications

Matz Haaks

- Down to the micron range: ideas and techniques
- The Bonn Positron Microprobe (BPM)
- Scanning Positron Microscopy (SPM):
 Application to material science
- A commercial SPM?

Building a positron microscope...

- Intense positron source (radioactive isotope, accelerator, reactor) with small phase space
- Mono-energetic positrons needed → efficient moderation. solid noble gases (Ne), some pure metals (W, Mo)
- Remoderation: brightness enhancement
- Electrostatic acceleration
- Electromagnetic beam guiding
- Focusing into the micron range
- Scanning the beam (electromagnetic) or scanning the sample (motorized stage)

Physical resolution limits:

- Lateral: 0.2 2 μm (depending on positron energy and defect density)
- Depth: 0.1 5 μm (depending on positron energy)

Positron microscope at the LLNL (e⁺-lifetime)

R.H. Howell, W. Stoeffl, A. Kumar, P.A. Sterne, T.E. Cowan, J. Hartley, Mater. Sci. Forum 255-257 (1997) 644

Positron microscope at the FRM II (e⁺-lifetime)

W. Triftshäuser, G. Kögel, P. Sperr, D.T. Britton, K. Uhlmann, P. Willutzki, Nucl. Instr. Meth. B 130 (1997) 264

Microhardness indentation in GaAs

The Bonn Positron Microprobe (Doppler spectroscopy)

H. Greif, M. Haaks, U. Holzwarth, U. Männig, M. Tongbhoyai, T. Wider, K. Maier, APL 15 (1997) 2115

Source and moderator

Positron beam geometry (Simion 7)

Tensile test: stress-strain-curve

Cyclic plastic zone at a fatigue crack

Compact tension fatigue: stainless steel AISI 321

Cyclic plastic zone at a fatigue crack

Rotating bending fatigue: TiAl6V4

Three-point bending test on AISI 1045: Positrons / X-rays

 Linear stress gradient

 Neutral plane in the center of the sample

Positrons from BPM

X-rays:

Lateral resolved Debye-Scherrer diffraction at 67 keV Beam diameter: 1.5 × 0.1 mm² Powder condition: ~40000 grains (hard X-ray beam-line at PETRA II, Desy/Hasylab, Hamburg)

Cracktip in CT geometry (AISI 1045): Positrons / X-rays

Hydrogen in aluminum alloys: AA 2024 and AA 6013

cyclic plastic zones produced in corrosive environment: diffusion of vacancies hindered by hydrogen

400 [µm]

Micro-scratch on GaAs surface

 Ductile behavior: Plasticity due to hydrostatic pressure

Prediction of fatigue failure:

Defect density as precursor for fatigue failure

► Material failure → Critical defect density → Critical S-parameter

Localization: Lateral defect structures during fatigue

Geometry with defined stress concentration

Stress concentrated in small volume

- FEM: VonMieses-stress σ_{VM}
- Strongly localised defect distribution expected

Positron results

Failure prediction using the critical defect density

Failure prediction using the critical defect density

A commercial SPM...

A commercial SPM...

Helmholtz-Institut für Strahlen - und Kernphysik Nussallee 14 - 16 53173 Bonn Germany

Positron Microbeams and their applications

Matz Haaks

- Down to the micron range: ideas and techniques
- The Bonn Positron Microprobe (BPM)
- Scanning Positron Microscopy (SPM):
 Application to material science
- A commercial SPM?