Materialforschung mit Positronen die intensive Positronenquelle EPOS

Halle-Wittenberg

R. Krause-Rehberg

- Historische Einführung
- Die Techniken der Positronenannihilation
- Anwendung in der Materialforschung
- EPOS = ELBE Positron Source

Historisches

 D.A.M. Dirac, Vorhersage des Positrons schon 1928; Interpretation der Zustände negativer Energie, die sich als Lösungen der Dirac-Gleichung ergeben; (Nobelpreis 1933)

Dirac D.A.M. (1928): Proc. Roy. Soc. 117, 610

- C.D. Anderson entdeckte mit Wilson-Kammer 1932 das Positron in der Höhenstrahlung (Nobelpreis 1936) Anderson C.D. (1932): Science 76, 238
- wies 1937 zusammen mit
 S. H. Neddermeyer das μ Meson nach
- 1933 exakter Nachweis der Paarerzeugung von Elektronen und Positronen durch Gammaquanten

bei Annihilation gilt Energie- und Impulserhaltungssatz

Fermi-Fläche von Cu

Fermi surface of copper

Positronenlabor in Halle

• Gründung des Labors im Jahre 1970 auf Initiative von Prof. Otto Brümmer

eindimensionale 2y-Winkelkorrelationsanlage erbaut von Prof. G. Dlubek und den Werkstätten des FB

Winkelkorrelation der Annihilationsquanten

 heute: Messung der Winkelkorrelation in zwei Dimensionen mit Flächendetektoren

2D-ACAR-System in Tsukuba

Positroneneinfang durch Kristalldefekte

- bald erkannt: Kristalldefekte können Positronen einfangen -Annihilationsparameter ändern sich signifikant
- MacKenzie (1967): thermische Leerstellen in Metallen
- Brandt (1968): Ionenkristalle
- Dekhtyar (1969): plastisch deformierte Halbleiter

Beispiel: attraktives Potential einer Leerstelle

- solche Einfangzentren sind u.a.:
 - Leerstellen und Leerstellenagglomerate
 - Versetzungen
 - Korngrenzen
 - kleine Ausscheidungen

Dopplerverbreiterung der Annihilationslinie

stürmische Entwicklung der Messtechnik und Elektronik führte in 60er Jahren zu neuen Techniken

Messung der Dopplerverbreiterung

- γ-Spektroskopie mittels Ge-Detektor
- auch Doppler-Koinzidenz-Spektroskopie

Dopplerverbreiterung der Annihilationslinie

• Beispiel: plastisch deformiertes GaAs (Leipner et al.)

• einfache Start-Stopp-Lebensdauermessung durch Registrierung zweier γ-Quanten (²²Na)

PM=Sekundärelektronenvervielfacher; SCA=Einkanalanalysator (Constant-Fraction Typ); TAC=Zeit-Impulshöhen-Konverter; MCA= Vielkanalanalysator

- Lebensdauerspektren bestehen aus exponentiellen Zerfallstermen
- Einfang von Positronen in Defekte mit offenem Volumen führt zu langen Komponenten im Spektrum
- Ergebnis der numerischen Auswertung: Lebensdauern τ_i und Intensitäten I_i

$$N(t) = \sum_{i=1}^{k+1} \frac{I_i}{\tau_i} \exp\left(-\frac{t}{\tau_i}\right)$$

Nachweis von Leerstellenclustern

$$N(t) = \sum_{i=1}^{k+1} \frac{I_i}{\tau_i} \exp\left(-\frac{t}{\tau_i}\right)$$

defekttypische Lebensdauern τ_i sind Maß für offenes Volumen im Defekt

Defekte nach Elektronenbestrahlung von Ge

- Elektronenbestrahlung 2MeV bei 4K induziert Frenkelpaare (Paare von Leerstellen und Zwischengitteratomen)
- Ausheilstufe bei 200 K
- bei hohen Bestrahlungsdosen bilden sich Doppelleerstellen, wenn Einzellerstellen beweglich werden
- Wegen hoher Energie der β Teilchen: hohe Informationstiefe
- mittlere e⁺-Eindringtiefe in GaAs: ca. 20 μm
- oft dünne Schichten zu untersuchen (Epitaxie, Implantation, usw.)
- Positronen werden moderiert

Monoenergetische Positronen: Moderation

• breite Energieverteilung im β -Spektrum

Monoenergetische Positronen: Moderation

Defektprofile messen mit einem monoenergetischen Positronenstrahl

• Eindringtiefe der Positronen durch Beschleunigungsspannung zu steuern

Defekte nach Ionenimplantation

- Ionenimplantation ist wichtigste Technik für das Dotieren in der planaren Technologie
- Hauptproblem: Ausheilen der Implantationsdefekte (z.B. Diffusion der Dotanden)

Laterale Auflösung mittels Positronen-Raster-Mikroskop

- laterale Auflösung ca. 1 μm
- Auflösung durch Positronendiffusion limitiert (ca. 100nm)
- anderes System an Univ.
 Bonn

Beispiel: Mikrohärteeindruck in GaAs

 Vergleich von Rasterelektronenmikroskopie (SEM), Kathodolumineszenz (CL) und dem Münchener Raster-Positronen-Mikroskop; Problem hier: Intensität

(Krause-Rehberg et al., 2002)

Nächster Schritt:

intensive Positronenquellen für Nutzergruppen

- bei Verwendung von Isotopenquellen: Zeit / Spektrum 10⁴ ... 10⁵ s
- intensive Positronenquellen notwendig, die f
 ür Nutzergruppen frei zug
 änglich sind
- Positronenerzeugung bspw. durch Paarbildung an hochenergetischen Elektronen-LINAC's (E > 10 MeV)
- weltweit drei Projekte:
 - LLNL (Livermore, USA): LINAC-System mit e⁺-Mikrostrahl, aber kein freier Zugang für Nutzergruppen
 - FRM-II Garching: u.a. Ankopplung des Positronen-Raster-Mikroskops
 - EPOS im FZR (Rossendorf): hochintensive Strahlungsquelle ELBE wird genutzt; einmalige primäre Elektronen-Zeitstruktur dieses LINACs zur direkten Positronen-Erzeugung
- EPOS = ELBE POsitron Source; ist als externer Messplatz des IWZ der Uni Halle geplant; freier Zugang für Nutzergruppen

EPOS = ELBE Positron Source

- EPOS kombiniert erstmalig alle Techniken der Positronenannihilation
- besonders hohe Datenrate durch Multidetektorsystem (z.B. 16 Detektoren für Lebensdauer-Spektroskopie)
- wichtigste Daten:
 - Zählrate > 10⁶ s⁻¹ (konventionell ca. 10³ s⁻¹); wichtig für kinetische Untersuchungen
 - erstmalig auch Lebensdauern bis > 100 ns messbar (Nanovoids in "lowk materials")
 - gute laterale Auflösung (25...50 μ m), aber keine Mikroskopie geplant
 - Extrem gute Zeitauflösung und Peak/UG-Verhältnis durch koinzidente Messung von Lebensdauer- und Doppler-Spektren
 - völlig neuartiges Detektorsystem mit digitaler Messung
 - dadurch: kein Abgleich von elektronischen Komponenten vor Ort mehr erforderlich
 - volle Systemkontrolle über Internet

Grundriss der ELBE-Halle

Grundriss des Positronenlabors

- Planung f
 ür die zwei neuen Labors ist abgeschlossen
- Bauausführung für 2003 geplant
- Vertrag zwischen Uni Halle und FZR ist fast unterschriftsreif
- Finanzierung ...

Januar 2003

Konverter-Kammer

- September 2002: Design-Workshop EPOS-02 wurde organisiert
- 22 Teilnehmer aus 11 Ländern
- Unterstützung durch Simulationen und Werkstattkapazität
- mögliches Design wurde ausführlich diskutiert

Anwendungsspektrum von EPOS

- Anwendung für die volle Breite der Materialwissenschaften
- durch besonders kurze Messzeiten (Spektrum in 100 ms): in-situ Studium der Defektkinetik (Diffusion, Ausscheidungsprozesse, Defektausheilung, ...)
- Tribology (oberflächennahe Defekte)
- Polymerphysik (Poren; Interdiffusion; ...)
- "low-k materials" (dünne hoch-poröse Schichten für elektronische Bauteile)
- Defekte in Halbleitern, Keramiken and Metallen (an Oberfläche und im Volumen)
- Epitaxie-Schichten (Wachstums- und Anpassdefekte)
- Strahlungshärte (z.B. Weltraummaterialien)
- ...

	1. Jahr	2. Jahr	3. Jahr
Laborräume			
Simulation Konverterkammer			
Simulation Strahlführung			
Konverterkammer und Strahlführung durch Tunnel			
Simulation Strahlenschutz			
Aufbau erster Chopper / Buncher			
Test des Konverters/Transportlinie			
Fertigstellung Vakuumsystem			
erste Einzellinse und Remoderator			
zweiter Chopper und Einzellinse			
Probenkammer			
Kammer für Isotopenquelle			
Test komplettes Transportsystem			
Detektorsystem und Software			
Messplatz-Automatisierung			
Justierung der Beamfokussierung			
Optimierung der Zeitauflösung			

Probleme

- Extrem hohes Datenaufkommen durch digitale Messung; könnte Messgeschwindigkeit bei Lebensdauer-Spektroskopie limitieren
- Strahlenschutz-Maßnahmen an Konverterkammer (Simulationen notwendig)
- aber: keine wesentlichen technischen Schwierigkeiten
- Vertrag mit FZR und Finanzierung
- für Umsetzung in 3 Jahren benötigen wir Unterstützung der zukünftigen Nutzer (Softwareentwicklung; Werkstattkapazität)

Zusammenfassung

- zur weiteren methodischen Entwicklung: intensive Positronenquellen notwendig
- EPOS ist ambitioniertes Projekt am FZ Rossendorf
- für Nutzergruppen ("user-dedicated facility)
- ergänzt ideal das Projekt am FRM-II in Garching

Den Vortrag gibt es hier

http://positron.physik.uni-halle.de