	Methods		Timing Resolutions	Conclusion
000000000	0000	000000	00000	00

Testing and Evaluation of Scintillators

Arnold Krille

Institut für Physik, Martin-Luther-Universität Halle-Wittenberg

February 18th, 2009

 Preface
 Methods
 Scintillators
 Timing Resolutions
 Conclusion

 OOOOOO
 OOOO
 OOOOO
 OOOOO
 OO

 Preface:
 Moved to IZM
 (With a Little Help from my Friends)

Preface:	Proud Father			
0000000000	0000	000000	00000	00
Preface	Methods	Scintillators	Timing Resolutions	Conclusion

Preface:	Table of Co	ontents		
000000000	0000	000000	00000	00
Preface	Methods	Scintillators	Timing Resolutions	Conclusion

1 Preface

- 2 Methods
- 3 Scintillators
- **4** Timing Resolutions

5 Conclusion

Preface	Methods	Scintillators	Timing Resolutions	Conclusion
000000000				
Positrons in	5 Minutes			

How to explain positrons in 5 minutes (or less). One talk to teach them all.¹

¹Sorry for that cheap "Lord of the rings" reference:-)

Antimator		havt Einstain		
000000000	0000	000000	00000	00
Preface	Methods	Scintillators	Timing Resolutions	Conclusion

Antimater and Albert Einstein

- Dirac[1] found solutions with positive charge in his electron-theory (1928)
- Anderson[2] found that the particle was not the proton but the positron, anti-particle of the electron (in 1933)
- positrons annihilate with electrons, always one e⁺ with one e⁻
- thanks to Einstein[3] the annihilation results in γ -Radiation where $E_{\gamma} = (m_{e^+} + m_{e^-})c^2$

Figure: Einstein 1921

<u> </u>				
000000000000000000000000000000000000000	0000	000000	00000	00
Preface	Methods		Timing Resolutions	Conclusion

Conservation of the pulse

Another physics law

 $\sum_{i=1}^{n} \mathbf{p}_{i} = 0$ The pulse of a system has to be conserved.

Effect on positron-electron-annihilation:

- Two γ-quants are emitted in opposite directions
- Both have energy of 511keV

Figure: Feynman-diagram of electron-positron-annihilation

Preface	Methods		Timing Resolutions	Conclusion
00000000	0000	000000	00000	00

Conservation of the pulse

Another physics law

 $\sum_{i=1}^{n} \mathbf{p}_{i} = 0$ The pulse of a system has to be conserved.

Effect on positron-electron-annihilation:

- Two γ-quants are emitted in opposite directions
- Both have energy of 511keV
- Positron is in ground-state
- But: Electron is in excited state
 - $\rightarrow \gamma$ -energy changes due to ${f p}$ of the electron
 - → Electron-energy depends on the state, core-electrons have higher energy than valence-electrons

Figure: Feynman-diagram of electron-positron-annihilation (extended)

Statistics (More or less:)

Important

Electron-positron-annihilation is a highly statistical process! Because the diffusion of the positron in the solid is a random-walk.

Annihilation is influenced by:

- Electron density
- Electron energy
- Atomic structure
- Defects, voids, charge

Figure: Positrons in the solid

Preface	Methods		Timing Resolutions	Conclusion
000000000	0000	000000	00000	00
Lifetime				

Lifetime of the positron is influenced mainly by two effects:

- The lower the electron density the lower the chance to hit an electron the higher the lifetime.
- One (or many) missing atoms/cores build a potential well the positron can't escape (because normal cores repulse the positron).
 - positron lifetime increases
 - but this only works in neutral or negativ traps

Figure: Positron-Lifetime in Cz-Silicon

 Preface
 Methods
 Scintillators
 Timing Resolutions
 Conclusion

 0000000000
 0000
 00000
 00000
 00

Doppler-broadening and Angular-correlation

- two techniques for one effect
- both measure the electron-energy from the energy-shift of the γ-quants

Doppler-broadening:

- measures the energy-shift in γ-direction (usually p_z)
- can be measured with one detector, →gives high background
- two detectors in coincidence give low background but longer measurement-time

 \blacksquare energy-range is 511keV \pm 10 keV

While the spectra can be calculated theoretically, most times results are compared to a defect-free spectrum.

Figure: Doppler-Spectrum[4]

 Preface
 Methods
 Scintillators
 Timing Resolutions
 Conclusion

 0000000000
 00000
 000000
 00000
 00

Doppler-broadening and Angular-correlation

- two techniques for one effect
- both measure the electron-energy from the energy-shift of the γ-quants

Angular-correlation:

- measures the energy-shift perpendicular to the γ -direction (p_x and p_y)
- has to be done in coincidence
- 1D- and 2D-measurements are possible
- typical range is ±10 20*mrad*, resolution is 0, 2*mrad*
- measurement for one spectrum is typically several days

Gives good results on the electronic structure, but evaluating the spectra requires many theoretical calculations.

Preface	Methods		Timing Resolutions	Conclusion
0000000000	0000	000000	00000	00
Overview				

Digital Po	ositron Life	time: Digitizer		
000000000				
Preface	Methods	Scintillators	Timing Resolutions	Conclusion

 Preface
 Methods
 Scintillators
 Timing Resolutions
 Conclusion

 000000000
 00000
 00000
 00000
 000
 000

 Digital Positron Lifetime:
 Photomultiplier
 00000
 00000
 00000
 00000

Digital D	acitran Life	timo: Scintilla	tor	
000000000	0000	000000	00000	00
Preface	Methods	Scintillators	Timing Resolutions	Conclusion

Digital Positron Lifetime: Scintillator

	Methods	Timing Resolutions	Conclusion
Methods			

- Time between two signals is needed
- \blacksquare Independent method: Correlation of channels \Rightarrow not so exact
- Time of minimum: Hard to determine
- Constant threshold trigger: Very inaccurate because of variable pulse height
- Constant fraction: Best method so far

	Methods		Timing Resolutions	Conclusion
000000000	0000	000000	00000	00
True Con	stant Fraction	pcf		

	Methods		Timing Resolutions	Conclusion
000000000	0000	000000	00000	00
True Con	stant Fraction	pcf		

	Methods		Timing Resolutions	Conclusion
000000000	0000	000000	00000	00
True Con	stant Fraction	pcf		

	Methods		Timing Resolutions	Conclusion
000000000	0000	000000	00000	00
True Cons	stant Fraction	pcf		

- Butterworth-Filter (implementation taken from [5])
- Followed by true constant fraction as before

Differentia	ted Con	stant Fraction	dpcf	
000000000	0000	000000	00000	00
	Methods		Timing Resolutions	Conclusion

Noise disturbs the direct differentiation especially on small pulses Therefor...

Differentia	ted Cons	tant Fraction	deef	
000000000	0000	000000	00000	00
	Methods		Timing Resolutions	Conclusion

 ...Signal is filtered by low-pass first Then true constant fraction is applied.

	Methods	Scintillators	Timing Resolutions	Conclusion
Scintillators	;			

Looking at different scintillation materials for pulse-shape, energy resolution and timing resolution.

- Fast and slow component
- Fastest risetime currently available (1.1ns)

BaF ₂	Barium	fluoride			
Preface 0000000	000	Methods 0000	Scintillators	Timing Resolutions	Conclusion OO

- Fast and slow component
- Fastest risetime currently available (1.1ns)

Better energy resolution than BaF₂

Has intrinsic decay of ¹67Lu

	Methods	Scintillators	Timing Resolutions	Conclusion
0000000000	0000	00000	00000	00
LSO Lu ₂ S	SiO₅ - Lutetium o	×yorthosilicate		

Better energy resolution than BaF₂

Has intrinsic decay of ¹67Lu

 Preface
 Methods
 Scintillators
 Timing Resolutions
 Conclusion

 000000000
 0000
 00000
 0000
 00

 LaBr₃(Ce)
 Lanthanum bromide

Very good energy resolution (real photo-peaks)

Very pricey, very hygroscopic

Very good energy resolution (real photo-peaks)

Very pricey, very hygroscopic

 \blacksquare Up to now only used as powder for $\alpha\text{-particles}$

Current research project...

Preface	Methods	Scintillators	Timing Resolutions	Conclusion
	0000		00000	00
ZnO	Zinc oxide			

 \blacksquare Up to now only used as powder for $\alpha\text{-particles}$

Current research project...

	Methods	Scintillators	Timing Resolutions	Conclusion
000000000	0000	000000	00000	00
Efficiency				

- Efficiency by comparison and $1/r^2$ -rule.
- Lower limit ($x \rightarrow 0, r \rightarrow \infty$): efficiency of a single scintillator point
- Upper limit $(x \to \infty, r \to 0)$: maximum digitizer transfer rate
- double-log plot fitted with arctan-function

	Methods	Scintillators	Timing Resolutions	Conclusion
		00000		
Efficiency				

	Methods	Timing Resolutions	Conclusion
Timing R	esolutions		

Lets take a look at the timing resolutions.

- Good energy resolution = good timing resolution?
- Best method for different pulse shapes?

	Methods		Timing Resolutions	Conclusion
			0000	
LaBr ₃ (Ce):	Si - 200901	19		

Data File	Variance	Lt_1 [ns]	Lt ₂ [ns]	I ₂ [%]	fwhm1 [ns]
pcf-lt01-HL	1.413	0.210	0.38	7.6	0.454
pcf-lt02-HL	1.440	0.211	0.38	6.6	0.453
pcf-lt03-HL	1.440	0.211	0.38	6.6	0.453
pcf-lt04-HL	1.440	0.211	0.38	6.6	0.453
pcf-lt05-HL	1.304	0.212	0.38	6.1	0.449

	Methods		Timing Resolutions	Conclusion
			00000	
LaBr ₃ (Ce):	Si - 200901	19		

Data File	Variance	Lt_1 [ns]	Lt_2 [ns]	I ₂ [%]	fwhm1 [ns]
pcf-lt01-HL	1.413	0.210	0.38	7.6	0.454
pcf-lt02-HL	1.440	0.211	0.38	6.6	0.453
pcf-lt03-HL	1.440	0.211	0.38	6.6	0.453
pcf-lt04-HL	1.440	0.211	0.38	6.6	0.453
pcf-lt05-HL	1.304	0.212	0.38	6.1	0.449
lp_pcf-lt06-HL	7.744	0.231			0.354
lp_pcf-lt07-HL	8.773	0.232			0.360
lp_pcf-lt09-HL	8.966	0.232			0.352
dpcf-lt10-HL	3.208	0.228			0.351
dpcf-lt11-HL	3.522	0.228			0.346

	Methods		Timing Resolutions	Conclusion
0000000000	0000	000000	00000	00
LSO Si -	20081124			

LSO with lp-pcf

Method	Variance	Lt_1 [ns]	fwhm $_1$ [ns]
pcf (cf0.1)	0.948	0.232	0.275
pcf (cf0.5)	2.005	0.288	0.568
lp-pcf (cf0.5)	1.321	0.245	0.462
dpcf (cf0.5)	1.507	0.228	0.298

Preface	Methods	Scintillators	Timing Resolutions	Conclusion
000000000	0000	000000	○○○●○	OO
BaF ₂ : Si - 2	20090103			

Method	Variance	Lt_1 [ns]	Lt_2 [ns]	I ₂ [%]	fwhm $_1$ [ns]
pcf	1.6615	0.224			0.258
lp_pcf	1.8142	0.224			0.252
dpcf	1.8142	0.224			0.252
dpcf	1.1949	0.225			0.270
dpcf	1.0046	0.212	0.68(3)	0.32%	0.275
dpcf	1.0062	0.210	0.38	2.39%	0.275
pcf	1.0127	0.216	0.38	2.34%	0.258
lp_pcf	1.0410	0.218	0.38	2.13%	0.252

	Methods		Timing Resolutions	Conclusion
			00000	
One slide	to show the	em all. ²		

	pcf	lp-pcf	dpcf
LaBr ₃ (Ce)	449ps	352ps	346ps
LSO	275ps - 568ps	355ps - 462ps	298ps
BaF_2	258ps	252ps	275ps

²Sorry again.

	Methods		Timing Resolutions	Conclusion
000000000	0000	000000	00000	••
Conclusions				

Aim from literatur: timing FWHM 150ps to 100ps.

Feels like: Back to square one

What is missing?

- Efficiency measurement with BaF₂
- Lifetime measurements with ZnO Data is there, evaluation has to run.
- Measurements with plastic scintillators.
- Maybe its the tubes?
 - More testing with XP20Z8 with second electronics.
 - Gain experience with XP2020
 - Look at Hamamatsu R4700U

Conclusion:	Thanks for	vour attention	ļ	
				00
Preface	Methods		Timing Resolutions	Conclusion

Get the slides at http://positron.physik.uni-halle.de/.

P. A. M. Dirac.

The quantum theory of the electron. Proc. R. Soc. London, Ser. A, 118:351–361, 1928.

C. D. Anderson.

The positive electron. Phys. Rev., 43:491-494, 1933.

A. Einstein.

Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig? Annalen der Physik, 323:639–641, 1905.

R. Krause-Rehberg and H. Leipner.

Positrons in Solids. Springer-Verlag, 2001.

S. D. Stearns.

Digital Signal Analysis. Hayden Book Company Inc., 1975.

A. Krille.

Aufbau und optimierung eines digitalen positronen-lebendauer-spektrometers, 2008.