EPOS - ELBE Positron Source Positron Annihilation Multifacility Project in Dresden

R. Krause-Rehberg

Univ. Halle

Martin-Luther-Universität Halle-Wittenberg

- 1. The ELBE Radiation Source in Dresden
- 2. Concept of EPOS

Martin-Luther-Universität Halle

Radiation Source ELBE at Research Center Rossendorf

- Where is Rossendorf?
- 600 employees
- main experiment: Radiation Source ELBE
- ELBE = Electron Linac with high Brilliance and low Emittance
- superconducting cavities (from TESLA, DESY Hamburg)
- 40 MeV, 1 mA
- main goal: IR Freeelectron Laser
- additional experiments: nuclear physics, radiation physics, neutron lab, and positron lab -> EPOS (ELBE POsitron Source)

Ground plan of the ELBE hall

injector area of primary ELBE beam

0

first harmonic buncher of electron beam (250 MHz)

ALC: NO

ML-IN.04

second harmonic buncher of electron beam (1500 MHz)

MB-IN 02

Time structure of primary electron beam

- primary electron beam (40 MeV x 1 mA = 40 kW)
- very interesting time structure: cw-mode of short bunches
- bunches very short (< 5 ps); bunch separation adjustable (e.g. 77 ns = 13 MHz)
- "normal" LINACs often have a repetition frequency of ≈ 1 kHz only
- positrons are obtained by pair production from electron beam hitting a tungsten target

EPOS = **ELBE Positron Source**

- intensive beam of slow, monoenergetic positrons
- all relevant positron techniques for materials research (positron lifetime, Coincidence Doppler broadening, AMOC)
- EPOS is external facility of Martin-Luther-University Halle at Research center Rossendorf
- in close collaboration with FZR
- user-dedicated facility
- complete remote control via web interface

Electron-Positron Converter in Cave 111b

Martin-Luther-Universität Halle

Ground plan of positron lab

- Construction work started
- Lab itself ready for use
- Basic financing by University Halle, federal state of Sachsen-Anhalt and EC

concrete screening of Cave 111b

photo: 18.11.2003

cable tunnel to be used for e⁺ beamline

1 55 8

Beam Schematics of EPOS

Detector system

- 3 experiments:
 - lifetime spectroscopy (16 BaF₂ detectors), single mode and coincidence mode
 - Coincidence Doppler (2 Ge detectors)
 - AMOC (1 Ge and 1 BaF₂ detector)
- digital detection system:
 - direct digital measurement of detector pulses
 - lifetime: almost nothing to adjust; time scale exactly the same for all detectors; easy realization of coincidence
 - Doppler: better energy resolution and pile-up rejection expected

Vacuum System

• whole system is remote controlled via web interface (pumps, valves and vacuum meters)

	2004	2005	2006
Laboratory			
Simulation e ⁺ converter			
Simulation beam			
Converter chamber and vacuum system in tunnel			
Screening of converter chamber			
First chopper / buncher			
Test converter / beam transport			
Vacuum system completion			
Conventional source chamber			
2. Chopper / buncher			
Sample chamber			
Completion of beam electronics			
Test of transport system			
Detector system and software			
Automation			
Software lifetime / Doppler spectra			
Optimization of time resolution			

Main features and applications of EPOS

main features:

- ultra-high intensity bunched positron beam (E₊=1...30 keV)
- very good time resolution by using the unique primary time structure of ELBE
- high quality spectra by lifetime and Doppler spectroscopy in coincidence mode
- fast lifetime mode (single detector mode) for kinetic investigations
- conventional source included for Doppler measurements (when primary beam is not available)
- fully **remote control** via Internet by user

Variety of applications in all field of materials science:

- defect-depth profiles due to surface modifications and ion implantation
- tribology (mechanical damage of surfaces)
- polymer physics (pores; interdiffusion; ...)
- porous materials (layers and bulk)
- defects in semiconductors, ceramics and metals
- epitaxial layers (growth defects, misfit defects at interface, ...)
- fast kinetics (e.g. precipitation processes in Al alloys; defect annealing; diffusion; ...)
- radiation resistance (e.g. space materials)
- many more ...

Conclusions

- ELBE Positron Source (EPOS) will combine most positron techniques
- very intense positron source for high-quality positron spectroscopy
- will be user-dedicated facility of University Halle at Research Center Rossendorf

This presentation can be found as pdf-file on our Website: http://positron.physik.uni-halle.de

contact: mail@KrauseRehberg.de

