Ion Cutting in wide band gap compound semiconductors: Atomic processes in hydrogen-induced layers

Thermoevolution of nanovoids and formation of extended internal surfaces studied by positron annihilation spectroscopy

in GaN, ZnO, AIN

- O. Moutanabbir^a, F. Suesskraut^b, and R. Krause-Rehberg^b
 - a) MPI für Mikrostrukturphysik Halle
 - b) Universität Halle, Inst. für Physik

Motivation: Heterogeneous integration of WBG materials

<u>Technological context:</u> Hetero-epitaxial growth of WBG materials on foreign substrates leads unavoidably to the formation of growth-related defects such as dislocations, stacking faults and twins that occur to relax the strain which significantly limits the quality of the grown structures with undesirable impact on devices performance.

<u>Our stratagem:</u> Direct wafer bonding in combination with hydrogen ion-cutting is a promising stratagem to integrate bulk quality thin layers onto various host materials achieving a wide variety of heterostructures sometimes inconceivable by epitaxy. Having bulk properties, these new materials are very promising for a low cost fabrication of WBG-based devices such as phosphorous-free white LED and high performance laser diodes.

Motivation: Understanding basic mechanisms of ion-cut process

Objective: In order to draw a precise mechanistic picture of H-induced splitting of WBG materials a deep investigation thermal evolution of H-defect complexes is required

Example: H-induced splitting of free standing GaN

As-implanted GaN: $2.6 \times 10^{17} \text{ H}^{+}/\text{cm}^{2}$ at 50 keV

High magnification XTEM image showing nanovoids (or nanobubbles) which appear bright.

Methodology

We are using a wide variety of experimental techniques in order to address different aspects of H-defect interactions leading to extended internal surfaces

Experimental Techniques:

- 1- Cross section transmission electron microscopy: Study of post-implantation structural and morphological changes;
- 2- Rutherford backscattering spectrometry in channeling mode: Characterization of displacement fields and strain build-up induced by thermal annealing of implanted substrate;
- 3- Elastic recoil detection analysis: Implanted gas depth profile and quantification of its amount as a function of thermal annealing;
- 4- Fourier Transform Infrared Spectroscopy: Identification of H-defect complexes induced by H implantation and their evolution during sub-surface cleaving process.
- 5- Positron annihilation spectroscopy: To probe open volumes and vacancy clusters induced by H implantation and their thermal evolution.

This ensemble of techniques cover most of the critical factors involved in ion-cut process. However, there is still a need to probe qualitatively the vacancylike complexes which seem to play the major role.

Methodology - RBS

An annealing Rutherford backscattering was performed and can be compared to PALS. Implantation: energy 50 keV, fluence 2.6x10¹⁷ H/cm²

Methodology - DOBS

- Slow positron DOBS of implanted GaN sample: results show strong defect signal
- 50 keV protons and 2.6x10¹⁷ H/cm²

Methodology - DOBS

- SRIM simulations: defect layer at about 350 nm
- DOBS profile much deeper: defect diffusion?

Experiments at PLEPS @ FRM-II – The working Plan

- Annealing of GaN layer after H implantation for 2 different heating rates
- about 12 annealing steps up to 800°C (in-situ annealing possible?)
- 2 samples with different annealing rates = 24 energy scans (about 15 spectra each)
- How about DOBS at the PLEPS system?

talk available @ http://positron.physik.uni-halle.de