Positronen-Messplatz bei ELBE

R. Krause-Rehberg

Martin-Luther-Universität Halle-Wittenberg

- Defektnachweis mit Positronen
- Das Konzept
 - Erzeugung der Positronen Einbindung in bestehendes Labor
 - Transport zum Messplatz
 - Der Messplatz
 - Zeitstruktur
- Strahlenschutz
- Wichtigste Probleme

Martin-Luther-Universität

Halle-Wittenberg

Das Positronen-Experiment im Festkörper

- Positronen-Wellenfunktion wird im Defekt lokalisiert
- Annihilationsparameter ändern sich, wenn Positron im Defekt zerstrahlt
- Defekte können nachgewiesen werden (Identifizierung und Quantifizierung)

Potentielle Anwendungen des Messplatzes

Vielfältige Probleme der Materialwissenschaften können mit dem geplanten System bearbeitet werden, wie bspw.:

- Defekt-Tiefenprofile nach Oberflächenmodifikation (z.B. Ionenstrahlen)
- Tribologie (Untersuchung von Defekten nach oberflächlicher mechanischer Schädigung)
- Polymere (Poren; kinetische Untersuchungen zur Interdiffusion)
- dünne hochporöse Polymerschichten für die Halbleiterindustrie (Ersatz für SiO₂)
- Defekte in Halbleitern nach Ionenimplantation
- epitaktische Schichten (Wachstumsdefekte, Misfit-Defekte am Interface)
- Oberflächenbeschichtungen für metallische Werkstoffe
- aushärtbare Aluminiumlegierungen für Flugzeugwerkstoffe
- Untersuchung zur Strahlenhärte von Solarzellen, usw.

Positronen bei ELBE – Das Konzept

- Positronen werden in einem Konverter durch Paarbildung erzeugt und in einer Metallfolie moderiert (zusätzlich: konventionelle e⁺-Quelle für Strahlpausen und Dopplermessungen)
- sind dann monoenergetisch (3 eV) und werden mit Energie von 5 kV über ca.
 20 m transportiert (magnetische Führung)
- Magnetfeld wird kurz vor dem Remoderator terminiert
- Strahl wird elektrostatisch auf Remoderator fokussiert und elektrostatisch zur Probe geführt
- Probe auf Hochspannung (-1...-30 kV)
- Zeitstruktur des Primärstrahls wird direkt benutzt; möglich durch 2 Buncher
- geplante Parameter des Positronenstrahles:
 - Intensität > 2x10⁸ moderierte e⁺/s auf Probe , d.h. ca. 10⁶ registrierte e⁺/s
 - Strahldurchmesser ca. 20 μ m (geeignet für Tiefenprofile an Keilproben)
 - Zeitdivergenz < 150 ps

(Abbildung nicht maßstäblich)

ca. 4 m

Erzeugung der Positronen – der Konverter

- der Konverter ist in der ersten Ausbaustufe ein feststehendes wassergekühltes Metalltarget (z.B. Wolfram oder Tantal)
- dort umsetzbare Leistung ca. 5...10 kW
- Primärstrahl: quasi-cw-Betrieb mit Bunchabstand von 77 ns ist ideale Zeitstruktur für die Positronenlebensdauer-Messung
- maximale Bunchladung von 5x10⁸
 Elektronen/Bunch zunächst nicht ausnutzen (entspricht 40 kW Strahlleistung), sondern nur ca. 10 kW
- spätere Ausbauphase: rotierender gekühlter Konverter o.ä.

Strahlaufweitung

- die Strahlaufweitung durch den Konverter ist ein Problem
- Standard Beam-Dump kann verwendet werden, wenn Eingangsflansch vergrößert wird von 90mm auf 150mm (Graphitkern hat 200 mm Durchmesser)
- Konverter darf nicht weiter als 230 mm vom Graphitkern entfernt sein
- Aufweitung durch Be-Fenster ist dagegen vernachlässigbar

Moderation der Positronen

- gut geeignet: 2µm W-Folie
- sie wird vom aufgeweiteten Primärstrahl ebenfalls getroffen; thermische Belastung aber nur einige Watt
- gesamte Moderationseffektivität ca. 10⁻⁶ langsame Positronen/Primärelektron Howell et al., Appl. Phys. Lett. 40 (1982) 751
- Zahl der moderierten Positronen am Moderator: 0,3...1 x 10¹⁰ (10...40 kW)
- Absaugung der monoenergetischen Positronen mit 5 kV (Moderator auf + 5 kV; Beamline auf Massepotential, Probe -1...-30 kV)
- Remoderation nötig für kleinen Strahldurchmesser ("Austricksen" des Liouvill'schen Theorems)
- Effektivität der Remoderation ca. 20...30 %; Zeit für Remoderation: einige ps

Prinzip der Moderation mit Metallfolie

Effektivität der Moderation für $^{22}Na\text{-Isotopenquelle}:\approx 10^{-4}$

Martin-Luther-Universität Halle

Strahlintensität der Positronenquelle an ELBE

e ⁻ /bunch ¹	mittlerer Strom (mA)	Strahl- leistung kW	moderierte Positronen am Moderator ²		moderierte Positronen auf Probe ³		Zählrate ⁴ Single- Detektor (s ⁻¹)		Zählrate ⁵ Multi-Detektor (s ⁻¹)		Zählrate ⁶ Koinzidenz- Messung (s ⁻¹)	
			pro Bunch	s ⁻¹	pro Bunch	s ⁻¹	pro Bunch	s ⁻¹	pro Bunc h	s ⁻¹	pro Bunch	S ⁻¹
5×10 ⁸	1	40	10 ³	1,3×10 ¹⁰	100	1,3×10 ⁹	0,01	1,3×10 ⁵	0,16	2×10 ⁶	0,024	3×10 ⁵
1,25×10 ⁸	0,25	10	250	3,3×10 ⁹	25	3,3×10 ⁸	2,5×10 ⁻³	3,3×10 ⁴	0,04	5×10 ⁵	6×10 ⁻³	7,5×10 ⁴
5×10 ⁷	0,1	4	100	1,3×10 ⁹	10	1,3×10 ⁸	1×10-3	1,3×10 ⁴	0,016	2×10 ⁵	2,4×10 ⁻³	3×10 ⁴

¹ bei 13×10⁶ Bunches/s (= 77ns Bunch-Separation und quasi-CW-Betrieb)

² moderierte Positronen am Moderator bei Moderatoreffizienz von 2×10⁻⁶ langsamen Positronen / primäres Elektron
 ³ bei Remoderator-Effektivität von 20% und 50% Strahlverlusten (Chopper, Blenden, Beschleunigungsnetze)

⁴ BaF₂-Szintillator Ø 40 mm (Nachweiseffektivität 15%) in 10 cm Entfernung von der Probe

⁵ bei 16 identischen Detektoren

⁶ bei zwei sich gegenüberstehenden Detektoren mit den Bedingungen von Fußnote 4

Transport der Positronen

- Beamline liegt auf Erdpotential; kein doppelwandiges Rohr erforderlich
- falls kurzlebige Positronenemitter am Konverter/Moderator entstehen könnte ein zeitlich unkorrelierter Positronen-Untergrund entstehen
- dann ist evtl. ist eine Chopper-Stufe (Blanker) erforderlich
- öffnet ein Zeitfenster von ca. 2 ns
- eine Buncher-Stufe in der Beamline ist erforderlich, um das Auseinanderlaufen des Strahles bis zum Remoderator zu begrenzen
- die Strahlführung erfolgt magnetisch bis kurz vor den Remoderator
- hier Übergang zu statischer Strahlführung durch "magnetic spider"

Die Zeitstruktur des Strahls

Fig. 1. – Schematic drawing of the pulsed positron microbream: S, ²²Na radioactive source; M, W (110) moderator; A1, first accelerator; D, drift tube; A2, second accelerator; Bl, blanker; Bu, buncher; A3, third accelerator; SC, scanning coils; T, target; OL, objective lens; Ph, scintillator and photomultiplier.

Beispiel aus Literatur: erste Stufe des Münchener Positronenmikroskops

A. Zecca et al., Europhys. Lett. 29 (1995) 617

Die Zeitstruktur des Strahls

- Kann man die Zeitstruktur des ELBE-Primärstrahls für die Positronenlebensdauer-Messung direkt nutzen?
- Zeitaufweitung durch Moderation: ca. 200 300 ps
- Zeitaufweitung durch $\Delta E = 1 \text{ eV}$ ist ca. 50 ps (bei 20m Laufstrecke)
- Laufwegunterschiede in Beamline < 10 mm und E_{e+} =5 keV dann Δ t=250ps
- Durchlaufzeit im zweiten Moderator bei E_{e+} = 5 keV nur einige ps
- damit sollte sich Zeitauflösung von ca. 100 ps erreichen lassen

Das Positronen-Experiment

- es sind drei parallele Experimente vorgesehen:
 - Positronenlebensdauer-Messung (zur Untergrund-Reduzierung und Verbesserung der Zeitauflösung auch als koinzidente Registrierung beider Annihilations-γ-Quanten)
 - Messung der Dopplerverbreiterung der Annihilationslinie (zur Untergrund-Reduzierung auch als koinzidente Registrierung beider Annihilations-γ-Quanten)
 - Age-Momentum-Correlation (AMOC)
- Kombination dieser drei Experimente ist optimal f
 ür alle Probleme der Materialwissenschaften (bisher noch nie realisiert)
- im Detail:
 - 16 Sonden zur Messung der Lebensdauer (jeweils gegenüber liegende Sonden in Koinzidenz zu schalten); besteht jeweils aus BaF₂-Szintillator/SEV-Kombination
 - 2 Ge-Reinstdetektoren zur Doppler-Koinzidenz-Messung
 - 1 Ge-Reinstdetektor mit gegenüberliegender BaF₂-Szintillator/SEV-Sonde für AMOC
- Messung aller Signale erfolgt digital (hoher Datenanfall, aber keine Abgleichelemente außer Sondenhochspannungen erforderlich)

Vorteile des Messplatzes

- erstmalige Kombination von Positronenlebensdauer-Messung, Dopplerverbreiterungs-Koinzidenz-Messung und AMOC (Age-Momentum Correlation)
- sehr hohe Zählrate durch Multidetektor-Anordnung
- beste Zeitauflösung der Positronenlebensdauer-Messung durch Ausnutzung der Pikosekunden-Zeitstruktur des Primärstrahls und Koinzidenz-Lebensdauer-Messung
- bisher unerreichtes Peak/Untergrund-Verhältnis der Lebensdauermessung durch koinzidente Registrierung der Annihilationsquanten und damit deutliche Verbesserung der Spektrenqualität
- spezieller Mode zum separaten Messen der Lebensdauerspektren von Para- und Orthopositronium mittels zwei- bzw. dreifach-Koinzidenz; damit getrennte Registrierung von Pick-off und Selbstannihilation von Positronium (wichtig bei hochporösen Polymeren)
- extrem schneller Mode f
 ür Positronenlebensdauer-Messungen zur Untersuchung kinetischer Vorg
 änge (>10⁶ s⁻¹ registrierte Ereignisse)
- beste Stabilität und Bedienerfreundlichkeit durch komplette digitale Messung aller Signale
- System geeignet für Tiefenprofile mit optimaler Tiefenauflösung

Vergleich mit ähnlichen Projekten

- LLNL: ebenfalls Multidetektoranordnung; dreifache Moderation; erwarteter Strahldurchmesser 1 μm; Nachteil: Penning-Falle erforderlich, da Wiederholrate des Primärstrahls zu gering; Status: Messplatz noch unvollendet
- FRM-II Garching: kontinuierliche Positronenquelle; nutzt n-Einfang in Cd (γ -Emission); hohe Primärintensität erwartet; Ankopplung des Münchener Raster-Positronen-Mikroskops geplant; wird jetzt mit 22-Na-Quellen betrieben; erreichte Ortsauflösung 2 μ m; nicht optimal für Materialforschung, da bspw. Doppler-Koinzidenzmessung fehlt, aber bildhafte Daten (z.B. Defekte an Riss-Spitze)
- Reaktorquelle Delft: kontinuierlicher Positronenstrahl; ca. 5x10⁷ e⁺/s; kein gepulster Strahl; nur Winkelkorrelation realisiert (spezielle Aussagen)
- KEK in Japan: 2.5 GeV mit Pulslänge 1 ms (Wiederholrate 50 pulse/s); Penning Falle erforderlich, Zeitstruktur kann nicht so benutzt werden; 10⁸ e⁺/s erreicht, 10⁹ erwartet; offen für Nutzer. Weiteres Projekt: 1 kW LINAC

Strahlenschutz

- bei 10⁸ e+/s auf der Probe: entspricht radioaktiver Quelle mit 10⁸ Bq = 2,7 mCi
- bei 20% Effektivität des Remoderators ist Abschirmung besonders dort nötig (dort annihilieren 80%)

- übliche Bleisteine haben 50mm Dicke, Abschirmung mit einem Stein ausreichend
- Limit für betrieblichen Überwachungsbereich nach neuer Strahlenschutzverordnung: > 1 mSv/a
- Fazit: Abschirmung bzgl. Strahlenschutz ist kein Problem, aber evtl. müssen Ge-Detektoren vor Strahlungsuntergrund von ELBE abgeschirmt werden
- Leichtbauwände genügen für Messplatz
- Man kann während Messung anwesend sein

Wichtigste Probleme

- Kühlung des Konverters bei hoher Strahlenergie
- Probenhalter und -wechsler (Isolationsprobleme: Probe auf Hochspannung)
- Sehr hoher Datenanfall bei digitaler Messung der Annihilationsstrahlung (je Detektor bis zu 50 MB /s)
- Falls Zahl der Positronen > 5x10⁸ /s Strahlenschutz wird schwieriger, aber kein Problem: gute Abschirmung auch für Untergrundreduktion nötig
- Falls weiteres Experiment vor Positronen-Konverter mit voller Strahlleistung: Konverter muss umgangen werden
- Finanzierung...

Zusammenfassung

- Positronen-Messplatz lässt sich mit geringen technischen Problemen und mit mäßigem Aufwand realisieren
- Zeitstruktur von ELBE (cw-Betrieb mit 77 ns Bunch-Abstand) ist ideal
- Ausstattung des Messplatzes optimiert f
 ür Forschung auf dem Gebiet der Materialwissenschaften
- extreme Zählraten ermöglichen kurzen Messbetrieb, damit 5...10% der Strahlzeit ausreichend (zusätzlicher Betrieb mit ²²Na-Quelle)
- Strahlenschutz am Messplatz kein Problem
- Realisierung als externer Messplatz des "Materialwiss. Zentrums" der MLU Halle (http://www.cmat.uni-halle.de/)
- Nutzung als "user-dedicated facility" vorgesehen

Dieser Vortrag ist als PDF-File auf unserer Homepage: http://www.ep3.uni-halle.de/positrons/

Kontakt: mail@PositronAnnihilation.net

