The (upcoming) digital real-time positron lifetime measurement of EPOS

A. Krille¹ R. Krause-Rehberg¹ F. Becvar² G. Brauer³

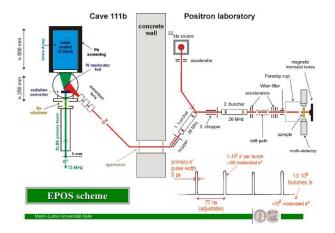
¹Fachbereich Physik, Martin-Luther-University Halle

²Department of Low-Temperature Physics, Charles University Prague

³Institute of Ion Beam Physics and Materials Research, Research Center Rossendorf

The application of high intensity positron beam techniques and digital lifetime positron spectroscopy in material science, Bergen (Netherlands) 2005

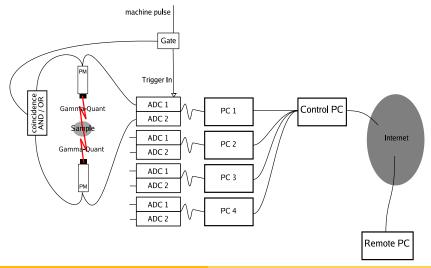
Outline


- Detectors
- Digitizer
- Computers
- 2 Acquisation-Software
 - Clients
 - Server
 - Analyzers

Hardware Detector Acquisation-Software Digitizer Conclusion Compute

Hardware:

Starting at yesterdays talk of R. Krause-Rehberg:

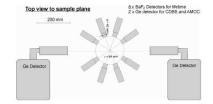


Krille, Krause-Rehberg, Becvar, Brauer

EPOS:digital

Detectors Digitizer Computers

Hardware



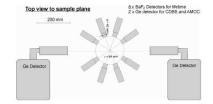
Hardware Detectors Acquisation-Software Digitizer Conclusion Computer

Hardware: Detectors

8 detectors (BaF₂-SEV + Hamamatsu PM) for lifetime measurement

- two modes of operation:
 - coincidence (AND) less background-noise
 - single (OR) faster measurement
- 2 additional Ge-detectors for Doppler-measurements

Start-signal from machine-pulse into trigger input of the digitizers (AND-coupled with coincidence).


No detection of the start-impuls \rightarrow better time resolution compared to conventional systems.

Hardware Detectors Acquisation-Software Digitizer Conclusion Computer

Hardware: Detectors

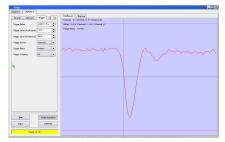
8 detectors (BaF₂-SEV + Hamamatsu PM) for lifetime measurement

- two modes of operation:
 - coincidence (AND) less background-noise
 - single (OR) faster measurement
- 2 additional Ge-detectors for Doppler-measurements

Start-signal from machine-pulse into trigger input of the digitizers (AND-coupled with coincidence).

No detection of the start-impuls \rightarrow better time resolution compared to conventional systems.

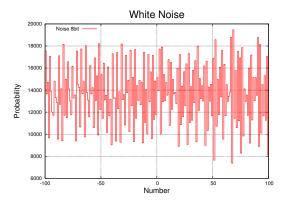
Detectors Digitizer Computers


Hardware: Digitizer

- 8 digitizers: Acqiris DC211 4GS/s, max. 1GHz input frequency, 8bit vertical resolution
- always two coupled together in one crate to form one 2-channel digitizer

One of four digitizers

Krille, Krause-Rehberg, Becvar, Brauer

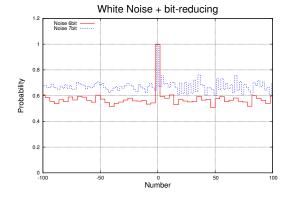

Anode-pulse of SEV + PM (of $Na^{22} - \gamma$)

EPOS:digital

Hardware Detectors Acquisation-Software Digitizer Conclusion Computer

Hardware: Digitizer: Problem of Noise

Testing the linearity of the digitizers with White Noise:



Hardware Detectors Acquisation-Software Digitizer Conclusion Computer

Hardware: Digitizer: Problem of Noise

The Problem of Noise

The last 2 bits are noisy but the last bit isn't randomly distributed.

Krille, Krause-Rehberg, Becvar, Brauer EPO

EPOS:digital

Detectors Digitizer Computers

Hardware: Computers

Hardware all the pc's have:

- Dual 2.8GHz Intel[©] Xeon[™]
- 4GB RAM
- Gigabit Ethernet

The clients will boot their OS over network.

- Easier system maintainance (Example: Software update)
- Less noise, heat and trouble with hardware

Special hardware of the server:

- Graphics
- 200GB HD (mirrored by RAID1 for data-integrity)

Special hardware of the clients:

- Acquiris Crade with 2 digitizers
- no HD
- no graphics at all

Detectors Digitizer Computers

Hardware: Computers

Hardware all the pc's have:

- Dual 2.8GHz Intel[©] Xeon[™]
- 4GB RAM
- Gigabit Ethernet

The clients will boot their OS over network.

- Easier system maintainance (Example: Software update)
- Less noise, heat and trouble with hardware

Special hardware of the server:

- Graphics
- 200GB HD (mirrored by RAID1 for data-integrity)

Special hardware of the clients:

- Acquiris Crade with 2 digitizers
- no HD
- no graphics at all

HardwareDetectorsAcquisation-SoftwareDigitizerConclusionComputers

Hardware: Computers: Operating System

Linux is choosen for the OS - Distribution: "Gentoo"

- The programmer knows Linux far better than Windows
- Windows had problems with hyperthreading and > 2GB RAM and is less optimised
- Better suitable for booting the clients over net
- No expenses for licenses

Clients Server Analyzers

Acquisation-Software

A homebrewn Laboratory-Software-Suite is needed. How hard can it be?

Overall needs

- network-transparent
- highly customizable and extendible
- (in parts) accessible via internet

Clients Server Analyzers

Acquisation-Software

A homebrewn Laboratory-Software-Suite is needed. How hard can it be?

Overall needs

- network-transparent
- highly customizable and extendible
- (in parts) accessible via internet

Acquisation-Software

- divide the apps into server- and client-part
- invent a simple, yet fast and sophisticated network-communications-protocol
- use existing tools and apps where possible (mysql for the database and apache+PHP for the webinterface)
- (1) think about standardized interfaces to replace parts easily

Acquisation-Software

- divide the apps into server- and client-part
- invent a simple, yet fast and sophisticated network-communications-protocol
- use existing tools and apps where possible (mysql for the database and apache+PHP for the webinterface)
- think about standardized interfaces to replace parts easily

Acquisation-Software

- divide the apps into server- and client-part
- invent a simple, yet fast and sophisticated network-communications-protocol
- use existing tools and apps where possible (mysql for the database and apache+PHP for the webinterface)
- think about standardized interfaces to replace parts easily

Acquisation-Software

- divide the apps into server- and client-part
- invent a simple, yet fast and sophisticated network-communications-protocol
- use existing tools and apps where possible (mysql for the database and apache+PHP for the webinterface)
- think about standardized interfaces to replace parts easily

Clients Server Analyzers

Acquisation-Software: Clients

Tasks:

- Fetching the data from the digitizers
- Evaluating the data (through exchangable plugins)
- Sending the results over the network to the server

Just simple needs?

- some advanced concepts for plugins (more on the analyzer-plugins later on)
- need for total network-transparency to remote-control the systems

Clients Server Analyzers

Acquisation-Software: Clients

Tasks:

- Fetching the data from the digitizers
- Evaluating the data (through exchangable plugins)
- Sending the results over the network to the server

Just simple needs?

- some advanced concepts for plugins (more on the analyzer-plugins later on)
- need for total network-transparency to remote-control the systems

Clients Server Analyzers

Acquisation-Software: Server

Tasks:

- controlling the clients
 - state (on/off, measuring/pausing, etc.)
 - analyzers / filters
 - parameters
- controlling the laboratory
 - vacuum
 - temperature
 - magnetic fields
 - beam
- controlling the measurement
 - sequence / loops / conditions

Clients Server Analyzers

Acquisation-Software

Fulfilling these tasks gets easier by using complicated plugin-concepts.

Plugins will be used for: Analyzers, Filters, Modifiers, data acquisation, data-display and -export, etc...

Hardware Clients Acquisation-Software Server Conclusion Analyzers

Acquisation-Software: Analyzers

What is the aim of the analyzer-plugin-concept?

- An interface to plug different methods of analysation into the chain of data-acquisation.
- and to replug them without recompiling the apps
- ...and even without restarting the apps
- analyzers can also make use of filters

Hardware Clients Acquisation-Software Server Conclusion Analyzers

Acquisation-Software: Analyzers

Currently planned analyzer-plugins:

- Lifetime Implementing constant fraction or integral constant fraction to measure positron-lifetime (as described by [Poggi, 2003] or [Becvar, 2004])
- Doppler To measure the doppler-broadening
- other debugging analyzers like:
 - noise
 - oscilloscope
 - first sample
 - etc...

Conclusion

Contact us if you are interested in joining the development. arnold.krille@gmail.com or a.krille@fz-rossendorf.de

Get the slides at http://positron.physik.uni-halle.de/

Literature

- F. Becvar, J. Cizek, I.Prochazka, J. Janotova The asset of ultra-fast digitizers for positron-lifetime spectroscopy NIM A 539 (2005) 372-385
- L. Bardelli, G. Poggi, M. Bini, G. Pasquali, N. Taccetti Time measurements by means of digital sampling techniques: a study case of 100 ps FWHM time resolution with a 100 MSample/s, 12 bit digitizer NIM A 521 (2004) 480-492