Positronen in der Materialforschung

R. Krause-Rehberg

Universität Halle

Hahn-Meitner-Institut Berlin

Berlin, 8. Juli 2003

- Defektnachweis mit Positronen
- Experimente nach Hochenergie-Selbstimplantation in Si
- Geplante hochintensive Positronenquellen in Deutschland

Defektnachweis mit Positronen

- Positronen-Wellenfunktion wird im Defekt lokalisiert (z.B. Leerstellen)
- Annihilationsparameter ändern sich, wenn Positron im Defekt zerstrahlt
- Defekte können nachgewiesen werden (Identifizierung und Quantifizierung)

Theoretische Berechnung der Lebensdauer für Leerstellen-Agglomerate in Si

- es existieren bestimmte Leerstellen-Konfigurationen mit besonders hohem Energiegewinn
- "Magic Numbers": 6, 10 und 14
- Positronenlebensdauer steigt mit Cluster-Größe
- ab ca. n = 10 Sättigungs-Effekt, d.h. exakte Größe dann nicht mehr zu ermitteln

T.E.M. Staab et al., Physica B 273-274 (1999) 501

Die Messung der Positronenlebensdauer

Positronenlebensdauer: Zeitdifferenz zwischen 1.27 MeV γ -Quant (β ⁺-Zerfall) und einem 0.511 MeV γ -Quant (Annihilation)

PM=Sekundärelektronenvervielfacher; SCA=Einkanalanalysator (Constant-Fraction Typ) TAC=Zeit-Impulshöhen-Konverter; MCA= Vielkanalanalysator

Positronenlebensdauer-Spektren

- Lebensdauerspektren bestehen aus exponentiellen Zerfallstermen
- Einfang von Positronen in Defekte mit offenem Volumen führt zu langen Komponenten im Spektrum
- Spektrenanalyse wird mittels nichtlinearer Anpassroutinen durchgeführt
- + Ergebnis: Lebensdauern τ_i und Intensitäten \mathbf{I}_i

$$N(t) = \sum_{i=1}^{k+1} \frac{I_i}{\tau_i} \exp\left(-\frac{t}{\tau_i}\right)$$

Positroneneinfang durch einen Defekttyp

$$\frac{\mathrm{d}n_{\mathrm{b}}(t)}{\mathrm{d}t} = -(\lambda_{\mathrm{b}} + \kappa_{\mathrm{d}})n_{\mathrm{b}}(t)$$
$$\frac{\mathrm{d}n_{\mathrm{d}}(t)}{\mathrm{d}t} = -\lambda_{\mathrm{d}}n_{\mathrm{d}}(t) + \kappa_{\mathrm{d}}n_{\mathrm{b}}(t)$$

Lösung ist das Zerfallsspektrum der Positronen:

$$D(t) = I_1 \exp\left(-\frac{t}{\tau_1}\right) + I_2 \exp\left(-\frac{t}{\tau_2}\right)$$

Abkürzungen:Die τ_i und I_i werden gefittet \Rightarrow Ergebnis: $\tau_1 = \frac{1}{\lambda_b + \kappa_d}$, $\tau_2 = \frac{1}{\lambda_d}$, $I_1 = 1 - I_2$, $I_2 = \frac{\kappa_d}{\lambda_b - \lambda_d + \kappa_d}$

Defekte in Ge nach Elektronenbestrahlung

- 2 MeV-Elektronenbestrahlung induziert Frenkelpaare
- Ausheilstufe bei 200 K
- bei hohen Bestrahlungsdosen bilden sich Doppelleerstellen

Informationstiefe der Positronen-Messung

- Positronen aus β⁺ -Zerfall: breites Emission-Spektrum bis 540 keV
- tiefe Implantation in Probe
- ungeeignet für
 Untersuchung dünner
 Schichten
- monoenergetische Positronen nötig
- Moderation mittels Metallfolien

Moderation von Positronen

Effektivität der Moderation: $\approx 10^{-4}$

Das Positronen-Strahlsystem in Halle

- Spot Durchmesser: 5mm
- Zeit für eine Doppler-Messung: 20 min
- Zeit für Tiefenscan: 8 h

Laterale Auflösung mittels Positronen-Raster-Mikroskop

- monoenergetische Positronen durch Moderation
- laterale Auflösung ca. 2 μm
- Lebensdauer-Messung möglich
- Auflösung prinzipiell durch
 Positronendiffusion limitiert
 (ca. 100nm)

W. Triftshäuser et al., NIM B 130 (1997) 265

Defekte nach Selbstimplantation in Si - der Rp/2 Effekt

- nach Hochenergie-Selbstimplantation von Si (3.5 MeV; 5 ×10¹⁵ cm⁻²) und kurzer Ausheilung (900°C, 30s): zwei neue Getterzonen bei R_p und R_p/2 (R_p = projected range of Si⁺)
- findet man experimentell mit SIMS nach Cu-Kontamination von der Rückseite und Diffusions-Temperung

- bei R_p: Getterung durch interstitielle Versetzungsringe (gebildet durch Überschuss-Si während RTA-Ausheilung)
- aber keine Defekte mit TEM bei R_p/2 sichtbar
- in Literatur: leerstellenartige aber auch interstitielle Defekte diskutiert
- Welcher Natur sind diese Defekte?

Tiefenprofil-Messungen mit einem Positronen-Mikrostrahl

Untersuchung zum Rp/2 Effekt

- 45 Lebensdauer-Spektren entlang Keil (α = 0.81°) entsprechen geometrischer Tiefenauflösung von 155 nm
- Positronenenergie 8 keV ⇒ mittlere Eindringtiefe 400 nm
- ergibt optimale Tiefenauflösung
- beide Defekt-Regionen gut sichtbar:
 - Leerstellencluster mit ansteigender Dichte bis 2 μ m (bei R_p/2)
 - in R_p Bereich: Lebensdauer τ₂ = 330 ps; offenes Volumen entspricht dem einer Doppelleerstelle; Defekt wird durch Versetzungsringe stabilisiert
- exzellente Übereinstimmung mit SIMS-Profil von gegettertem Cu

R. Krause-Rehberg et al., Appl. Phys. Lett. 77 (2000) 3932

Nachweis von Cu mit Doppler-Koinzidenz

- Probe durch chemisches Abdünnen in R_p/2-Region präpariert
- Doppler-Koinzidenz zeigt Cu in den Leerstellen-Agglomeraten

Getterzentren:

- R_p/2: Leerstellencluster
- R_p: Versetzungsringe

Notwendig:

intensive Positronenquellen für Nutzergruppen

- bei Verwendung von Isotopenquellen: Zeit / Spektrum 10⁴ ... 10⁵ s
- intensive Positronenquellen notwendig, die f
 ür Nutzergruppen frei zug
 änglich sind
- Positronenerzeugung bspw. durch Paarbildung an hochenergetischen Elektronen-LINAC's (E > 10 MeV)
- weltweit drei Projekte:
 - LLNL (Livermore, USA): LINAC-System mit e⁺-Mikrostrahl, aber kein freier Zugang für Nutzergruppen -> vor kurzem eingestellt!
 - FRM-II Garching: u.a. Ankopplung des Positronen-Raster-Mikroskops
 - EPOS im FZR (Rossendorf): hochintensive Strahlungsquelle ELBE wird genutzt; einmalige primäre Elektronen-Zeitstruktur dieses LINACs zur direkten Positronen-Erzeugung
- EPOS = ELBE POsitron Source; ist als externer Messplatz des IWZ der Uni Halle geplant; freier Zugang für Nutzergruppen

EPOS = ELBE Positron Source

- EPOS kombiniert erstmalig alle Techniken der Positronenannihilation
- besonders hohe Datenrate durch Multidetektorsystem (z.B. 16 Detektoren für Lebensdauer-Spektroskopie)
- wichtigste Daten:
 - Zählrate > 10⁶ s⁻¹ (konventionell ca. 10³ s⁻¹); wichtig für kinetische Untersuchungen
 - erstmalig auch Lebensdauern bis > 100 ns messbar (Nanovoids in "lowk materials")
 - gute laterale Auflösung (<100 μ m), aber keine Mikroskopie geplant
 - extrem gute Zeitauflösung und Peak/UG-Verhältnis durch koinzidente Messung von Lebensdauer- und Doppler-Spektren
 - völlig neuartiges Detektorsystem mit digitaler Messung
 - dadurch: kein Abgleich von elektronischen Komponenten vor Ort mehr erforderlich
 - volle Systemkontrolle über Internet

Grundriss der ELBE-Halle

Grundriss des Positronenlabors

- Planung f
 ür die zwei neuen Labors ist abgeschlossen
- Bauausführung hat bereits begonnen
- Vertrag zwischen Uni Halle und FZR ist fast unterschriftsreif
- Finanzierung ...

Mai 2003

EPOS (ELBE Positron Source)

- 3 experiments: lifetime spectroscopy (16 BaF₂ detectors); Doppler coincidence (2 Ge detectors), and AMOC (1 Ge and 1 BaF₂ detector)
- arrangement of all detectors in a plane
- one large extra BaF₂ behind the sample for detection with high counting rate (no coincidence possible)
- advantages of digital detection system:
 - lifetime: almost nothing to adjust; time scale exactly the same for all detectors; easy realization of coincidence
 - Doppler: better energy resolution and pile-up rejection expected
- disadvantage: large number of data

Digitale Lebensdauermessung

- > 1 GHz analoge Bandbreite
- Sample-Rate 2...5 GS/s

Digitale Lebensdauermessung

- Sweep zweier passiv gemischter SEV-Anodensignale (XP2020)
- konventionelle Messung mit 22-Na
- externe Verzögerung betrug 35 ns
- durchgezogene Linie ist Anpassung an die gemessenen Punkte mit kubischen Splines

- Spektrenqualität wird erheblich besser durch Koinzidenzmessung
- Beispiel: MC-Simulation von Spektren

Anwendungsspektrum von EPOS

- Anwendung für die volle Breite der Materialwissenschaften
- durch besonders kurze Messzeiten (Spektrum in 100 ms): in-situ Studium der Defektkinetik (Diffusion, Ausscheidungsprozesse, Defektausheilung, ...)
- Tribology (oberflächennahe Defekte)
- Polymerphysik (Poren; Interdiffusion; ...)
- "low-k materials" (dünne hoch-poröse Schichten für elektronische Bauteile)
- Defekte in Halbleitern, Keramiken and Metallen (an Oberfläche und im Volumen)
- Epitaxie-Schichten (Wachstums- und Anpassdefekte)
- Strahlungshärte (z.B. Weltraummaterialien)
- ...

	1. Jahr	2. Jahr	3. Jahr
Laborräume			
Simulation Konverterkammer			
Simulation Strahlführung			
Konverterkammer und Strahlführung durch Tunnel			
Simulation Strahlenschutz			
Aufbau erster Chopper / Buncher			
Test des Konverters/Transportlinie			
Fertigstellung Vakuumsystem			
Quellenhalter f. 22-Na-Quelle			
zweiter Chopper und Einzellinse			
Probenkammer			
Kammer für Isotopenquelle			
Test komplettes Transportsystem			
Detektorsystem und Software			
Messplatz-Automatisierung			
Justierung der Beamfokussierung			
Optimierung der Zeitauflösung			

Probleme für EPOS

- extrem hohes Datenaufkommen durch digitale Messung; könnte Messgeschwindigkeit bei Lebensdauer-Spektroskopie limitieren
- Strahlenschutz-Maßnahmen an Konverterkammer (Simulationen notwendig)
- aber: keine wesentlichen technischen Schwierigkeiten
- Finanzierung noch offen
- für Umsetzung in 3 Jahren benötigen wir Unterstützung der zukünftigen Nutzer (Softwareentwicklung; Werkstattkapazität)

Forschungsreaktor FRM-II, München

- neuer Reaktor wird jetzt nach dritter Teilgenehmigung hochgefahren
- Positronenquelle mittels Reaktion: ¹¹³Cd(n,γ)¹¹⁴Cd
- drei γ Quanten \rightarrow Paarbildung
- kontinuierlicher
 Positronenstrahl
- ≈10¹⁰ moderierte e⁺/s erwartet

Fotos: Stand Juli 2000

Zusammenfassung und Ausblick

- Positronen: wertvolle Methode zur Charakterisierung von Werkstoffen in allen Bereichen
- Stand der Technik: Einsatz von Positronen-Mikrostrahl mit Positronen-Lebensdauer-Spektroskopie
- notwendig: intensivere Positronenquellen, z.B. EPOS oder FRM-II

Vortrag als PDF-File: http://positron.physik.uni-halle.de

