Defect chemistry in GaAs studied by two-zone annealings under defined As vapor pressure

<u>V. Bondarenko¹, R. Krause-Rehberg¹, J. Gebauer²,</u>

F. Redmann¹

¹ Martin-Luther-University Halle-Wittenberg, Halle, Germany ² Department of Materials Science and Engineering, University of California at Berkeley, Berkeley, CA 94720, USA

Introduction

- GaAs Market continues growing
 - GaAs remains an important material for production of semiconductor devices
 - Decrease in GaAs ICs production is compensated by the increase in

PA (Power Amplifiers) modules for wireless local-area Networks

MMIC for automotive radars

Thermodynamics of GaAs

Defects concentrations

- Defect chemistry evaluate the equilibrium defect concentrations as function of doping, temperature and chemical potential (stoichiometry)
- Major achievments of thermodynamic analysis of GaAs
 - Demonstration of the key role of V_{As}⁺ for dopant solubility in GaAs and
 - of V_{Ga}^{m-} for annealing and diffusion of n-doped GaAs *D.T.J. Hurle, Journ. of Appl. Phys.* 85 (1999)
 - prediction of negative T-dependence for V_{Ga} (Fermi-level effect)

T.Y.Tan et al, Appl. Phys. A 56 (1993)

- Role of Positron annihilation
 - Experimental proove of Fermi-level effect
 - Determination of formation enthalpy and entropy of the uncharged V_{Ga}

J. Gebauer et al., Physical Review B 67 (2003)

Thermodynamic model of undoped GaAs

Native point-defects

six native defects formation is described by six thermodynamic massaction law reactions:

$$\frac{1}{4} As_{4,vap} \leftrightarrow I_{As} \Rightarrow K_{1}(T) = \frac{[I_{As}]}{P_{As_{4}}^{1/4}}$$

$$Ga_{vap} \leftrightarrow I_{Ga} \Rightarrow K_{2}(T) = \frac{I_{Ga}}{P_{Ga}}$$

$$As_{As} \leftrightarrow I_{As} + V_{As} \Rightarrow K_{3}(T) = [I_{As}][V_{As}]$$

$$Ga_{Ga} \leftrightarrow I_{Ga} + V_{Ga} \Rightarrow K_{4}(T) = [I_{Ga}][V_{Ga}]$$

$$Ga_{Ga} + I_{As} \leftrightarrow As_{Ga} + I_{Ga} \Rightarrow K_{5}(T) = \frac{[As_{Ga}][I_{Ga}]}{[I_{As}]}$$

$$As_{As} + I_{Ga} \leftrightarrow Ga_{Ga} + I_{As} \Rightarrow K_{6}(T) = \frac{[Ga_{As}][I_{Ga}]}{[I_{Ga}]}$$

$$[I_{As}] \propto P_{As_4}^{1/4}$$

$$[I_{Ga}] \propto P_{As_4}^{-1/4}$$

$$[V_{As}] \propto P_{As_4}^{-1/4}$$

$$[V_{Ga}] \propto P_{As_4}^{1/4}$$

$$[As_{Ga}] \propto P_{As_4}^{1/2}$$

$$[Ga_{As}] \propto P_{As_4}^{-1/2}$$

Experimental

Results: Positron lifetime spectroscopy

- Si-doped GaAs
 - Vacancy + shallow traps
 - τ₂ = 260±5 ps
 - Si_{Ga}V_{Ga} defect complex
 - Si_{As} as shallow trap
 - [Si_{Ga}V_{Ga}] increases with increasing p_{As}
 - Semi-insulating GaAs
 - Vacancy + shallow traps
 - Origin unknown
 - τ₂ = 293±10 ps; I₂ = 40-70%
 - Reciprocal dependence [Vacancy] - p_{As}

Results: Hall-effect measurements (SI GaAs)

Hall-measurements at room temperature

- All SI samples became p-type
 - No correlation between P_{As} and [p]

Neutral vacancy defect

P _{As} , bar	[p], cm ⁻³	μ, cm²/Vs	ρ, Ω cm
0.2	7.28×10 ¹¹	333	2.57×10 ⁴
0.7	4.74×10 ¹⁰	191	6.87×10 ⁵
2.6	1.42×10 ¹¹	176	2.47×10 ⁵
5.6	7.18×10 ¹⁰	203	4.27×10 ⁵
9.7	5.35×10 ¹¹	407	2.86×10 ⁴

Discussion: evidence of V_{As} in annealed SI GaAs

Discussion: charge state of V_{As}

Discussion: charge state of V_{As} -defect

- Hall measurements
 - Showed no correlations with V_{As} concentrations and hence
 - imply they are in the neutral charge state
- Positron lifetime spectroscopy

Discussion: formation energy of V_{As}

Summary

Positron annihilation + annealing experiments

- Formation of monovacancy-like defects at 1100° C in SI GaAs
- τ₂ = 293 ± 10 ps
- Shallow traps
- Hall-measurements
 - Vacancy-like defect is neutral
 - Cu_{Ga} acceptor-like impurity, acting as the positron shallow traps $E_A = E_V + 0.48 \text{ eV}$
- Pressure dependence
 - Arsenic vacancy V_{As} is observed
 - Gibbs free energy of formation of the V_{As} was obtained:
 - $G_{f} = 3.94 \pm 0.003 \text{ eV}$