Observation of vacancies during Zn diffusion in GaP

R. Krause-Rehberg¹, V. Bondarenko¹, N.A. Stolwijk², J. Pöpping², T.E.M. Staab³

¹Univ. Halle, ²Univ. Münster, ³Univ. Bonn

- 1. Zn-diffusion experiments in GaP
- 2. The EPOS positron source at Research Center Rossendorf

Sample conditions

Experiment	sample	treatment	remarks	
	А	as-grown GaP reference	negligible low dislocation density, no	
Reference		sample	extended defects	
	В	Reference annealing:	defined P vapor pressure, but no Zn in	
		95.1 h at 907°C	ampoule	
	С	Zn diffusion annealing:	defined P vapor pressure, Zn vapor	
Diffusion95.1 h at 907°Cprexperimentsan		95.1 h at 907°C	pressure obtained by adding GaP:Zn to the	
			ampoule	
	D	Zn Diffusion annealing:	defined P vapor pressure, Zn was added as	
		95.1 h at 907°C	an elementary powder to the ampoule	

- Samples were quenched to RT water during diffusion
- Main difference of diffusion experiments: Zn vapor pressure varies due to different Zn source
- Diffusion profiles are distinctly different

Zn diffusion profiles by SIMS

• Zn diffusion profiles obtained by SIMS at beveled samples (wedge angle 6°)

Positron lifetime results

- both reference samples: no trapping
- distinct vacancy signal only after Zn in-diffusion
- sample D: almost complete positron trapping at RT
- defect-related lifetime: τ_v = 282 ps
- outward relaxation is expected for both vacancies:
- V_{Ga} -> 3.8% and V_P -> 6.1%
 (G. Schwarz et al., Phys. Rev. 1998)
- lifetimes were theoretically calculated taking into account the relaxation

Positron lifetime results

• defect-related lifetime: τ_v = 282 ps

Defect	e ⁺ lifetime	remarks	
	in ps		
GaP bulk	220		
V_{Ga}	258	unrelaxed	
	270	3.8% outward	
		relaxation	
V _P	244	unrelaxed	
	271	6.1% outward	
		relaxation	
V _P -Zn _{Ga}	274	6.1% outward	
		relaxation	
V _P -V _{Ga}	307	unrelaxed	

* from lifetime: no decision between $V_{\mbox{\scriptsize Ga}}$ and $V_{\mbox{\scriptsize P}}$

Doppler Coincidence Experiments

- DBCS was used to study the chemical environment of the detected monovacancy
- surprise: although complete trapping -> high-momentum Doppler spectrum close to reference sample
- comparison with theoretically calculated spectra required

Doppler Coincidence Experiments

Doppler Coincidence Experiments

Conclusion

- During Zn in-diffusion: vacancies are formed
- concentration is much higher than thermal vacancies
- Vacancy is located in P sublattice
- V_p should be positive -> thus a defect complex is most probably observed
- best candidate: V_P-Zn_{Ga}

planned experiment:

- comparison of vacancy depth profile with Zn-diffusion profile
- we will use Munich Microbeam and the beveled SIMS samples

The EPOS positron source at Research Center Rossendorf

- main experiment: Radiation source ELBE (Electron Linac with high Brilliance) and low Emittance
- primary electron beam (40 MeV x 1 mA = 40 kW) is already available
- main goal: IR Free-electron Laser
- very interesting time structure: cw-mode of short bunches

Ground plan of the ELBE hall

- Construcion work started
- Financing ...

 positron lab in ELBE hall already under construction

Positron Lab -

X-ray Lab

concrete screening of Cave 111b (location of e⁺ converter)

Martin-Luther-Universität Halle

EPOS (ELBE Positron Source)

Detector system

- 3 experiments: lifetime spectroscopy (16 BaF₂ detectors); Doppler coincidence (2 Ge detectors), and AMOC (1 Ge and 1 BaF₂ detector)
- digital detection system:
 - lifetime: almost nothing to adjust; time scale exactly the same for all detectors; easy realization of coincidence
 - Doppler: better energy resolution and pile-up rejection expected

	1. Year	2. Year	3. Year
Laboratory			
Simulation e ⁺ converter			
Simulation beam			
Converter chamber and vacuum system in tunnel			
Screening of converter chamber			
First chopper / buncher			
Test converter / beam transport			
Vacuum system completion			
Conventional source chamber			
2. Chopper / buncher			
Sample chamber			
Completion of beam electronics			
Test transport system			
Detector system and software			
Automation			
Software lifetime / Doppler spectra			
Optimization of time resolution			

Thank you for your attention!

This presentation can be found as pdf-file on our Websites: http://positron.physik.uni-halle.de http://positronannihilation.net

contact: mail@KrauseRehberg.de