Die Positronenannihilation - eine Methode zur Porosimetrie im Nanometer-Maßstab

R. Krause-Rehberg, S. Thränert

Martin-Luther-Universität Halle-Wittenberg Naturwissenschaftliche Fakultät II Institut für Physik

d^P 1 to 110 nm

- **spinodal phase separation**
- **decomposition is initiated by heat treatment**
- **alkali rich borate phase <-> pure silica**
- **alkali phase soluble in acid -> silica network**
- **pore size depends on basic material**
- **porosity of 50 %**

F. Janowski, D. Enke in F. Schüth, K.S.W. Sing, J. Weitkamp (Eds.), *Handbook of Porous Solids*, WILEY-VCH, Weinheim, **2002**, 1432-1542.

Controlled pore glass - CPG

- **homogenous microstructure**
- **uniform pore size**

- **controlled pore size**
- **we can choose d (!)**

D. Enke, F. Janowski, W. Schwieger, *Microporous and Mesoporous Materials* **2003**, *60*, 19-30.

Principles of PALS: pick-off annihilation

positrons from ²²Na:

- **Thermalize, diffuse, being** trapped and annihilate
- OR: **positrons form Ps**

positronium:

- **p-Ps** -> short self annihilation lifetime of 0.125 ns
- **o-Ps** -> long self annihilation lifetime of 142 ns (3γ)
	- \rightarrow pick off annihilation (2 γ)

pick-off annihilation:

- o-Ps captures e- with anti-parallel spin
- happens during collisions at walls of pore
- lifetime (τ) decreases rapidly
- **is function of pore size: 1.5 - 142 ns**
- **also for closed pore systems**

Principles of PALS

sample preparation: "sandwich"

positron(ium) lifetime: time between "birth" (1,27 MeV) and "death" (511 keV)

Principles of PALS: typical spectrum

typical lifetime spectrum for CPG (here d = 20 nm):

Extended Tao Eldrup model

- **extended TE model (calculations by EELViS):**
	- **quantum well of infinite height, but: overlap of o-Ps wave function and wall of pore ->**
	- **Boltzmann statistics ascribes explicit temperature dependence to the lifetime**
	- **integrals of spherical / cylindrical Bessel functions**
	- δ = 0.19 nm
	- **mean free path D = 4V/S = dcyl, diameter of cylinder**
	- **mean free path D = 4V/S = 2/3 dsphere, diameter of sphere**

R. Zaleski, *Excited Energy Levels and Various Shapes (EELViS),* Institute of Physics, Maria Curie-Sklodowska University, Lublin, Poland

The experiments at T = 300 K

- we measured CPG in a broad pore size range
- **given pore sizes obtained by** N_2 -adsorption or Hg-intrusion
- δ = 0.193 nm best fit for **our CPG -> calibration curve for calculating pore size**
	- good model for $T = 300$ K, also good model for temperature dependence of lifetime?

The T-dependence

- **calculations:** cylindric model with δ = 0.193 nm
- **although we found good agreement for T > 300 K temperature behavior cannot be explained very well at low temperatures**
- **for 20 nm a catching effect** of o-Ps at low temperatures may occur (van-der-waals power, "capillary condensation") and o-Ps bonds at the wall
- **n** model still too simple but works well for room temperature

Pore size distribution

- τ_4 and its distribution σ_4 by analysis of truncated spectra starting from 20 ns
	- **problem of LT: limit of 142 ns is not taken into account, for** large pores unphysically large σ_4
- distribution for 4 smaller selected pores

Pore size distribution

distribution of τ_4 **:** $\alpha_4(\tau) = \alpha_4(\lambda)\lambda^2$,

 $\alpha_4(\lambda)$ is probability density function (pdf) of o-Ps annihilation rate, assumed by LT to be a log. Gaussian

from distr. $\alpha_4(\tau)$ it is possible to calc. **distribution of diameters of the pore:**

$$
n(d_{cyl}) = \alpha_4(\tau) \left(\frac{d\tau_4}{dd_{cyl}}\right)
$$

 all we need is a differentiable analytical function τ_4 = $\tau_4(d_{cyl})$:

$$
\tau_4 = A_2 + \left(\frac{A_1 - A_2}{1 + (d_{cyl}/d_{cyl0})^p}\right)
$$

Pore size distribution

- distribution norm to 1
- **a** arrows show d directly calculated from mean o-Ps lifetime using cylindric model (1.77 nm, 3.09 nm, 4.38 nm and 5.80 nm)
- **this distribution contains the true variation of pore sizes but also the effect of irregular not linear character of pores**
- **long tail for larger pores:**
	- \Box overestimation of $\alpha_4(\tau)$
	- **nonlinear char. ⁴ vs. d**

to be published

Summary

- **for T = 300 K we found a calibration curve for CPG**
	- **non destructive porosimetry tool for opened and closed pore-systems**
	- **most sensitive for d = 0.5 … 10 nm**
- **for other temperatures the measurements show disagreement to the ETE model -> model still too simple**
- **for pores d < 10 nm we can calculate a pore size distribution**
- **near future:**
	- **phase transition of gas in CPG (to be presented @ PPC9 Wuhan / China, May 2008)**
	- **SBA-15 (to be presented @ COPS VIII Edinburgh / Scotland, June 2008)**

Acknowledgment

Special thanks from our group go to:

- **D. Enke for samples/discussion and much more**
- **R. Zaleski and his group (Lublin/Poland) for EELViS**
- **G. Dlubek (Halle/Germany) for fruitful discussions**