Identification of Vacancy Defects using Positron Annihilation

R. Krause-Rehberg

Univ. Halle

Martin-Luther-Universität Halle-Wittenberg

- Why are so tiny defects important at all?
- Positron trapping by vacancies
- Other techniques of positron annihilation
- Vacancy clusters

Point defects determine optical and electronic properties of semiconductors

- Point defects are generated by irradiation (e.g. cosmic rays), by plastic deformation or by diffusion, ...
- Metals in high radiation environment -> formation of voids -> embrittlement
- Properties of vacancies and other point defects must be known
- Analytical tools are needed to characterize point defects

The positron lifetime spectroscopy

²²Na

- positron wave-function can be localized in the attractive potential of a defect
- annihilation parameters change in the localized state
- e.g. positron lifetime increases in a vacancy
- lifetime is measured as time difference between appearance of 1.27 (start) and 0.51 MeV (stop) quanta
- defect identification and quantification possible

Positron lifetime spectroscopy

- positron lifetime spectra consist of exponential decay components
- positron trapping in open-volume defects leads to long-lived components
- longer lifetime due to lower electron density
- * analysis by non-linear fitting: lifetimes τ_i and intensities \mathbf{I}_i

positron lifetime spectrum:

$$N(t) = \sum_{i=1}^{k+1} \frac{I_i}{\tau_i} \exp\left(-\frac{t}{\tau_i}\right)$$

trapping coefficient

$$\kappa_{\rm d} = \mu C_{\rm d} = \frac{I_2}{I_1} \left(\frac{1}{\tau_{\rm b}} - \frac{1}{\tau_{\rm d}} \right)$$

trapping rate

defect concentration

Vacancies in thermal Equilibrium

Defects in Iron after tensile strength and fatigue treatment

- We performed an extensive study of defects in mechanically damaged iron and steel
- Positrons are very sensitive: detection of defects already in the Hooks range of the stress-strain experiment
- Vacancy cluster and dislocations are detectable in both cases

- in a metal: charge of a vacancy is effectively screened by free electrons
- they are not available in semiconductors
- thus, long-range Coulomb potential added
- positrons may be attracted or repelled
- trapping coefficient μ is function of charge state

Vacancies may be charged

For a negative vacancy:

- Coulomb potential is rather extended but weak
- it supports trapping only at low temperatures
- at higher temperatures: detrapping dominates and vacancy behaves like a vacancy in a metal or a neutral vacancy

Positive vacancies repel positrons

Puska et al. 1990

Theoretical calculation of vacancy levels in GaAs

- Theoretical description not simple
- relaxation of vacancy possible -> Jahn-Teller distortion / negative-U effect

Ionization levels of arsenic vacancies, gallium vacancies, and antisites according to theoretical calculations of (a) Baraff and Schlüter (1985a), (b) Puska (1989a), (c) Jansen and Sankey (1989), (d) Xu and Lindefelt (1990), (e) Zhang and Northrup (1991), and (f) Seong and Lewis (1995), (g) Zhang and Chadi (1990), (h) Pöykkö et al. (1997). E_{val} and E_{cond} are the edges of the valence and the conduction band, respectively.

Positron trapping by negative vacancies

- trapping process can be described quantitatively by trapping model
- Coulomb potential leads to Rydberg states
- from there: positrons may reescape by thermal stimulation
- once in the deep state: positron is captured until annihilation
- detrapping is strongly temperature dependent

$$\delta_{\rm R} = \frac{\kappa_{\rm R}}{\rho_{\rm v}} \left(\frac{m^* k_{\rm B} T}{2\pi\hbar^2}\right)^{3/2} \exp\left(-\frac{E_{\rm R}}{k_{\rm B} T}\right)$$

 ρ_{v} vacancy density

Manninen, Nieminen, 1981

Negative vacancies show temperature-dependent positron trapping

positron trapping in negatively charged Ga vacancies in SI-GaAs

 temperature dependence of positron trapping is rather complex

$$\kappa = \frac{\vartheta_{\rm R} \rho_{\rm v} \kappa_{\rm R0} T^{-1/2}}{\vartheta_{\rm R} \rho_{\rm v} + \kappa_{\rm R0} \left(\frac{m^* k_{\rm B}}{2\pi\hbar^2}\right)^{3/2} T \exp\left(-\frac{E_{\rm R}}{k_{\rm B}T}\right)}$$

- low temperature: ~T^{-0.5} due to diffusion limitation in Rydberg states
- higher T: stronger temperature dependence due to thermal detrapping from Rydberg state

Le Berre et al., 1995

Martin-Luther-Universität Halle

Temperature-dependent positron trapping

- temperature dependence of positron trapping can be used to determine the charge state of vacancies
- trapping to positive vacancies possible at elevated T
- however: has never been observed
- example: Positron trapping in eirradiated Si
- trapping by negatively charged divacancies

(Mäkinen et al. 1989)

Sensitivity limits of PAS for vacancy detection

- lower sensitivity limit e.g. for negatively charged divacancies in Si starts at about 10¹⁵ cm⁻³
- upper limit: saturated positron trapping
- defect identification still possible
- Then: only lower limit for defect density can be given

Negative ions act as shallow positron traps

- at low T: negatively charged defects without open volume may trap positrons
- "shallow" due to small positron binding energy
- annihilation parameters close to bulk parameters
- acceptor-type impurities, dopants, negative antisite defects
- thermally stimulated detrapping can be described by:

$$\delta = \frac{\kappa}{\rho_{\rm st}} \left(\frac{m^* k_{\rm B} T}{2\pi\hbar^2}\right)^{3/2} \exp\left(-\frac{E_{\rm st}}{k_{\rm B} T}\right)$$

Saarinen et al., 1989

Shallow positron traps

- positron trapping model gets more complex
- however: trapping at shallow traps can be avoided at high temperatures

Effect of shallow positron traps

Martin-Luther-Universität Halle

Identification of V_{Ga}-Si_{Ga}-Complexes in GaAs:Si

Measurement of Doppler Broadening

- electron momentum in propagation direction of 511 keV γ-ray leads to Doppler broadening of annihilation line
- can be detected by conventional energy-dispersive Ge detectors and standard electronics

Line Shape Parameters

S parameter:

$$S = A_S / A_0$$

W parameter:

$$N = A_W / A_0$$

W parameter mainly determined by annihilations of core electrons (chemical information)

Doppler Coincidence Spectroscopy

- coincident detection
 of second annihilation
 γ reduces background
- use of a second Ge detector improves energy resolution of system

Doppler Coincidence Spectra

 $E_1 + E_2 = 2 m_0 c^2 = 1022 keV$

Doppler-Coincidence-Spectroscopy in GaAs

- Chemical sensitivity due to electrons at high momentum (core electrons)
- a single impurity atom aside a vacancy is detectable
- examples: V_{Ga}-Te_{As} in GaAs:Te

J. Gebauer et al., Phys. Rev. B 60 (1999) 1464

Defects in electron-irradiated Ge

- Electron irradiation (2 MeV @ 4K) induces Frenkel pairs (vacancy interstitial pairs)
- steep annealing stage at 200 K
- at high irradiation dose: divacancies are formed (thermally more stable)

Martin-Luther-Universität Halle

Low-temperature electron irradiation

- low-temperature electron irradiation was performed at 4K (E_{e-}=2 MeV)
- annealing stage of monovacancies at about 170 K
- moving V_{si} partly form divacancies
- divacancies anneal at about 550...650 K

Martin-Luther-Universität Halle

GaAs: annealing under defined As-partial pressure

GaAs: Annealing under defined As pressure

Comparison of doped and undoped GaAs

Bondarenko et al., 2003

Martin-Luther-Universität Halle

Vacancy clusters in semiconductors

- vacancy clusters were observed after neutron irradiation, ion implantation and plastic deformation
- due to large open volume (low electron density) -> positron lifetime increases distinctly
- example: plastically deformed Ge
- lifetime: τ = 525 ps
- reason for void formation: jog dragging mechanism
- trapping rate of voids disappears during annealing experiment

Theoretical calculation of vacancy clusters in Si

- there are cluster configurations with a large energy gain
- "Magic Numbers" with 6, 10 und 14 vacancies
- positron lifetime increases distinctly with cluster size
- for n > 10 saturation effect, i.e. size cannot be determined

T.E.M. Staab et al., Physica B 273-274 (1999) 501-504

Lateral Resolution with Positron-Scanning-Microscope

- lateral resolution 2 μm
- Positron lifetime spectroscopy
- However lateral resolution principally limited by positron diffusion (L_* \approx 100nm)

Martin-Luther-Universität Halle

W. Triftshäuser et al., NIM B 130 (1997) 265

Microhardness indentation in GaAs

 Comparison of SEM and Munich Positron Scanning Microscope

- problem here at the moment: intensity
- hope: strong positron source at FRM-II
 Garching or EPOS project in Rossendorf

EPOS = **ELBE Positron Source**

- ELBE -> electron LINAC (40 MeV and up to 40 kW) in Research center Rossendorf (near Dresden)
- EPOS will be the combination of a positron lifetime spectrometer, Doppler coincidence, and AMOC
- User-dedicated facility
- main features:
 - ultra high-intensity bunched positron beam (E_{+} =1...30 keV)
 - very good time resolution by using the unique primary time structure of ELBE
 - high quality spectra by lifetime and Doppler spectroscopy in coincidence mode
 - fast lifetime mode (single detector mode) for kinetic investigations
 - very high count rate (> 10^6 s^{-1}) by multi-detector array
 - conventional source included for Doppler measurements (when primary beam is not available)
 - fully remote control via Internet by user

Schematic view of EPOS (ELBE Positron Source)

EPOS - Applications

Variety of applications in all field of materials science:

- defect-depth profiles due to surface modifications and ion implantation
- tribology (mechanical damage of surfaces)
- polymer physics (pores; interdiffusion; ...)
- low-k materials (thin high porous layers)
- defects in semiconductors, ceramics and metals
- epitaxial layers (growth defects, misfit defects at interface, ...)
- fast kinetics (e.g. precipitation processes in Al alloys; defect annealing; diffusion; ...)
- radiation resistance (e.g. space materials)
- many more ...

Conclusions

- Positrons are a unique tool for characterization of vacancy-type defects in solids
- Positrons are sensitive for charge state of vacancies in semiconductors
- vacancy clusters can easily be observed by positron lifetime spectroscopy (appear after irradiation and plastic deformation)

This presentation can be found as pdf-file on our Website: http://positron.physik.uni-halle.de

contact: mail@KrauseRehberg.de

