Observation of vacancies during Zn and Cu diffusion in GaP & GaAs

Sample conditions

Experiment	sample	treatment	remarks
	А	as-grown GaP reference	negligible low dislocation density, no
Reference		sample	extended defects
	В	Reference annealing:	defined P vapor pressure, but no Zn in
		95.1 h at 907°C	ampoule
	С	Zn diffusion annealing:	defined P vapor pressure, Zn vapor
Diffusion		95.1 h at 907°C	pressure obtained by adding GaP:Zn to the
experiments			ampoule
	D	Zn Diffusion annealing:	defined P vapor pressure, Zn was added as
		95.1 h at 907°C	an elementary powder to the ampoule

- Samples were quenched to RT water during diffusion
- Main difference of diffusion experiments: Zn vapor pressure varies due to different Zn source
- Diffusion profiles are distinctly different

Zn diffusion profiles by SIMS

• Zn diffusion profiles obtained by SIMS at beveled samples (wedge angle 6°)

Positron lifetime results

- •
- both reference samples: no trapping defect-related lifetime: $\tau_v = 282 \text{ ps}$ distinct vacancy signal only after 7n

Defect	e ⁺ lifetime	remarks
	in ps	
GaP bulk	220	
V _{Ga}	258	unrelaxed
	270	3.8% outward
		relaxation
V _P	244	unrelaxed
	271	6.1% outward
		relaxation
V _P -Zn _{Ga}	274	6.1% outward
-		relaxation
V _P -V _{Ga}	307	unrelaxed

taking into account the relaxationfrom lifetime: no decision between

 V_{Ga} and V_P

Doppler Coincidence Experiments

- DBCS was used to study the chemical environment of the detected monovacancy
- surprise: although complete trapping -> high-momentum Doppler spectrum close to reference sample
- comparison with theoretically calculated spectra required

Doppler Coincidence Experiments

GaP:Zn - Conclusions

- During Zn in-diffusion: vacancies are formed
- concentration is much higher than thermal vacancies
- Vacancy is located in P sublattice
- V_p should be positive -> thus a defect complex is most probably observed
- best candidate: V_P-Zn_{Ga}

planned experiment:

- comparison of vacancy depth profile with Zn-diffusion profile
- we will use Munich Microbeam and the beveled SIMS samples

Zn-diffussion in GaAs

- During Zn in-diffusion: vacancies are formed
- Effect is rather strong
- almost saturated positron trapping: [V] > 10¹⁸ cm⁻³
- 295 ps seems to indicate
 V_{As} rather than V_{Ga}

Doppler-Koinzidenz-Spektroskopie in GaAs

- chemische Sensitivität bei hohen Elektronenimpulsen (Core-Elektronen)
- ein einzelnes Fremdatom in direkter Umgebung einer Leerstelle ist nachweisbar
- Beispiel: V_{Ga}-Te_{As} in GaAs:Te

J. Gebauer et al., Phys. Rev. B 60 (1999) 1464

GaAs:Zn – Doppler Coincidence Spectroscopy

- we performed CDBS measurements at NEPOMUC (FRM-II)
- results need comparison with theoretically calculated spectra

Cu-Diffusion in GaAs

- Copper is an unintentional impurity in most semiconductors
- Cu diffuses rapidly already at low temperatures
- GaAs: diffusion coefficient D = 1.1×10^{-5} cm² s⁻¹ at 500°C [1]
- Cu diffuses very fast by interstitial diffusion (kick-out process) [2]
- The solubility between 2×10^{16} cm^{\circ 3} (500°C) and 7×10^{18} cm^{\circ 3} (1100°C) [1]
- Cu_{Ga} is a double acceptor
- our work: comprehensive positron annihilation study of GaAs after Cu in-diffusion
- Experimental finding: Vacancy clusters decorated with copper will be formed during annealing of GaAs when Cu is introduced by diffusion before.

[1] R.N. Hall and J.H. Racette, J. Appl. Phys. 35 (1964) 379.

[2] F.C. Frank and D. Turnball, Phys. Rev. 104 (1956) 617.

Literaturergebnisse an GaAs:Zn

- Zn diffundiert via Kick-out Mechanismus
- verdrängt am Ende Ga-Atom: Überschuss an Gai
- diese Ga-Atome bilden Zusatzebenen (Interstitial-Loops)
- dafür sind ebenso viele As-Atome nötig
- kommen aus Gitter, hinterlassen As-Leerstellen
- diese As-Leerstellen bilden Leerstellenagglomerate
- dabei kondensiert überschüssiges Ga zu "flüssigem" Tropfen in Leerstellencluster

M. Luysberg et al., Mat. Sci. & Eng. B13 (1992) 137-151

- 1. direkter Zwischengittermechanismus
- 2. Leerstellenmechanismus
- 3. Frank-Turnbull-Mechanismus
- 4. Kick-out-Mechanismus

Literaturergebnisse an GaAs:Zn

Modellvorstellung der Bildung von V_{As}-Clustern

Fig. 12. Model for defect formation in the front region (\bigcirc , gallium atoms; \bullet , arsenic atoms): (a) the supersaturation of I_{Ga} (\bigcirc) caused by the incorporation of zinc atoms results in the formation of perfect interstitial dislocation loops; stoichiometry is preserved by emission of V_{As} (\square) at the periphery of growing loops; (b) mobile V_{As} (\square) agglomerate and finally collapse into voids by occupying all arsenic lattice sites; the voids are half-filled with gallium (\bigcirc) and may be filled with further gallium atoms produced by the interstitial-substitutional exchange of zinc.

GaAs:Cu

- auch in GaAs:Cu haben wir sowohl die Interstitial Loops als auch Leerstellenagglomerate gefunden (Kooperation Dr. Leipner)
- Vermutung: ähnliche Verhältnisse wie bei Zn-Diffusion
- Experiment mit Positronen:
 - 1. 30 nm Cu-Schicht aufgedampft
 - 2. Temperung bei 1100°C (unter As-Druck)
 - 3. Abschrecken zu RT
 - 4. Anlassen zu verschiedenen Temp.
 - 5. Positronenmessung
 - Cu ist bei RT übersättigt, beginnt Ausscheidung
 - Ergebnis der PAS: Bildung von leerstellenartigen Defekten bei erneuter Cu-Diffusion

GaAs undot. mit 6e18 Cu; abgeschreckt

Leipner (1999)

Leerstellencluster in Cu-diffundiertem GaAs:Te

- Probenzustand: GaAs:Te; 30 nm Cu-Schicht (entspricht 5E17 cm⁻³); bei 600 K getempert nach Abschrecken von 1100°C zu RT
- Leerstellencluster im TEM: Durchmesser ca. 100 nm

Bestimmung des Defekttyps

- Bildung dieser Cluster ist unabhängig von n-Dotierung (Te)
- zunächst ist LD bei ca. 250 ps (Einzelvakanz)
- bei Temperung wird LD größer: 320-350 ps entspricht etwa Doppelvakanz
- bei 800 K: τ₂ > 450 ps: große Leerstellen-Agglomerate (n > 10)

Zusammenfassung

- Bei Cu-Diffusion entstehen Leerstellen und Leerstellen-Agglomerate, die mit Cu dekoriert sind
- sind relativ klein (n = 1 ... 10 bei Temperung unter 800 K)
- mit TEM zusätzlich: sehr große Leerstellencluster (100 nm Durchmesser)
- zusätzliche Untersuchungen (Positronen, Hall-Messungen, TEM, SIMS, SAXS)
 - Bilden sich große Cluster bereits beim Abkühlen?
 - Theoretische Rechnungen: Wie viel Cu-Atome sind an Cluster?
 - Wie verhält sich Cu in anderen III-V-Verbindungen?
 - Bilden andere "Kick-out"-Elemente ebenfalls kleine Leerstellencluster-Fremdatom-Paare?
 - Wie wirken sich diese Defekte auf die Diffusionsmechanismen aus?

