Materialforschung mit Positronen

R. Krause-Rehberg

Universität Halle, FB Physik mail@KrauseRehberg.de

- Die Positronenannihilation als Methode zum Defektnachweis
 - Techniken: Lebensdauer-Spektroskopie
 - Dopplerverbreiterung der Annihilationslinie
- Einige Beispiele
- Zusammenfassung

Positroneneinfang durch Kristalldefekte

- Positronenwellenfunktion wird im Defekt lokalisiert
- Annihilationsparameter ändern sich, wenn Positron im Defekt zerstrahlt
- Defekte können nachgewiesen werden (Identifizierung und Quantifizierung)

Das Einfangpotential von geladenen Leerstellen

- Attraktives Potential durch fehlendes Atom (abstoßender Kern fehlt)
- in Halbleitern: Zusätzlicher Coulomb-Anteil (∝ 1/r → ist weit ausgedehnt)
- kein Positroneneinfang durch positive Leerstellen

Die Positronenlebensdauer-Messung

Die Messung der Positronenlebensdauer

- Positronenlebensdauer wird als Zeitdifferenz gemessen zwischen 1.27 MeV Gammaquant (β^+ -Zerfall) und einem 0.511 MeV Quant (Annihilationsprozeß)
- PM=Sekundärelektronenvervielfacher; SCA=Einkanalanalysator (Constant-Fraction Typ); TAC=Zeit-Impulshöhen-Konverter; MCA= Vielkanalanalysator

Positronenlebensdauer-Spektren

- Lebensdauerspektren bestehen aus exponentiellen Zerfallstermen
- Einfang von Positronen in Defekte mit offenem Volumen führt zu langen Komponenten im Spektrum
- Spektrenanalyse wird mittels nicht-linearer Anpassroutinen nach Subtraktion von Untergrund und Quellanteil durchgeführt
- Ergebnis: Lebensdauern τ_i und Intensitäten I_i

$$N(t) = \sum_{i=1}^{k+1} \frac{I_i}{\tau_i} \exp\left(-\frac{t}{\tau_i}\right)$$

Defekte in Ge nach Elektronenbestrahlung

- Elektronenbestrahlung induziert Frenkelpaare
- Ausheilstufe bei 200 K
- bei hohen Bestrahlungsdosen bilden sich Doppelleerstellen

Defekte in Eisen im Zugversuch und nach Ermüdung

- ausgedehnte Studie von Defekten in mechanisch geschädigtem Eisen und Stahl
- Positronen sind sehr empfindlich f
 ür Nano-Defekte: Nachweis der Defektgeneration bereits im Hookschen Bereich der Spannungs-Dehnungs-Kurve

Laserhärtung von Stahl

- oberflächliche Härtung von Stahl mit Laserpulsen
- Laserleistung 1330 W, 16 mm/s
- Härtung durch mikrostrukturelle Umwandlung des Stahl und durch Bildung von Versetzungen
- Positronen sind nicht f
 ür H
 ärte empfindlich, aber f
 ür Nanodefekte

Die Dopplerverbreiterung der Annihilationslinie

Messung der Dopplerverbreiterung der Annihilationslinie

- Elektronenimpuls in Ausbreitungsrichtung der 511 keV γ -Quanten führt zur Dopplerverbreiterung der Annihilationslinie
- kann mittels Energie-dispersiver Ge-Reinstdetektoren gemessen werden

Linienform-Parameter

 $S = A_S/A_0$

W-Parameter: $W = A_W / A_0$

W-Parameter hauptsächlich durch Annihilation mit Core-Elektronen bestimmt (chemische Information)

Die Doppler-Koinzidenz-Spektroskopie

Doppler-Koinzidenz-Spektren

Normalized intensity

Informationstiefe der Positronenmessung

mittlere (maximale) Implantationstiefe von unmoderierten Positronen (1/e 0.999):

Si: <u>50µ</u>m (770µm)

GaAs: 22µm (330µm) PbS: 15µm (220µm)

Moderation von Positronen

Effektivität der Moderation: $\approx 10^{-4}$

Das Positronenstrahlsystem in Halle

- Spot Durchmesser: 5mm
- Zeit für eine Doppler-Messung: 20 min
- Zeit für Tiefenscan: 8 h

Laterale Auflösung mittels Positronen-Raster-Mikroskop

- laterale Auflösung ca. 1 μm
- Auflösung durch Positronendiffusion limitiert (ca. 100nm)
- anderes System an Univ.
 Bonn

Beispiel: Mikrohärteeindruck in GaAs

 Vergleich von Rasterelektronenmikroskopie (SEM), Kathodolumineszenz (CL) und dem Münchener Raster-Positronen-Mikroskop; Problem hier: Intensität

(Krause-Rehberg et al., 2002)

- Defekte mit offenem Volumen:
 - Leerstellen & ihre Agglomerate
 - Versetzungen (Defekte auf der Versetzungslinie)
 - Korngrenzen (für Körner < 1 μ m)
- Defekte ohne offenes Volumen:
 - Ausscheidungen
 - negativ geladene Defekte, z.B.
 akzeptorartige Verunreinigungen in Halbleitern

Welche Defekte?

Positroneneinfang durch einen Defekttyp

$$\frac{\mathrm{d}n_{\mathrm{b}}(t)}{\mathrm{d}t} = -\left(\lambda_{\mathrm{b}} + \kappa_{\mathrm{d}}\right)n_{\mathrm{b}}(t)$$
$$\frac{\mathrm{d}n_{\mathrm{d}}(t)}{\mathrm{d}t} = -\lambda_{\mathrm{d}}n_{\mathrm{d}}(t) + \kappa_{\mathrm{d}}n_{\mathrm{b}}(t)$$

Lösung ist das Zerfallsspektrum der Positronen:

$$D(t) = I_1 \exp\left(-\frac{t}{\tau_1}\right) + I_2 \exp\left(-\frac{t}{\tau_2}\right)$$

Abkürzungen:Die
$$\tau_i$$
 und I_i werden gefittet \Rightarrow Ergebnis: $\tau_1 = \frac{1}{\lambda_b + \kappa_d}, \quad \tau_2 = \frac{1}{\lambda_d}, \quad \text{Einfangrate } \kappa$ Einfangrate κ $I_1 = 1 - I_2, \quad I_2 = \frac{\kappa_d}{\lambda_b - \lambda_d + \kappa_d}$ $\kappa_d = \mu C_d = \frac{I_2}{I_1} \left(\frac{1}{\tau_b} - \frac{1}{\tau_d}\right)$

Bestimmung absoluter Defektkonzentrationen

- Der Einfangkoeffizient μ $\kappa = \mu C$ muss durch eine unabhängige Methode bestimmt werden
- Positroneneinfang kann stark von Temperatur abhängen $\Rightarrow \mu = f(T)$

Defekt in Si _{300K}	μ (10 ¹⁵ s ⁻¹)
V-	1
V ²⁻	2
V^0	0.5
V^+	< 0.1
Versetzung	$1 \text{ cm}^2 \text{s}^{-1}$
Leerstellen- cluster	n ·µ _{1V}

Identifikation von V_{Ga} -Si_{Ga}-Komplexen in GaAs:Si

Gebauer et al., Phys. Rev. Lett. 78, 3334-3337 (1997)

Diffusion von Cu in GaAs

 In GaAs:Cu sowohl Interstitial-Loops als auch Leerstellenagglomerate gefunden (Kooperation Dr. Leipner)

- Vermutung: ähnliche Verhältnisse wie bei Zn-Diffusion (TEM, Luysberg et al., 1992)
- Experiment mit Positronen:
 - 1. 30 nm Cu-Schicht aufgedampft
 - 2. Temperung bei 1100°C (unter As-Druck)
 - 3. Abschrecken zu RT
 - 4. Anlassen zu verschiedenen T
 - 5. Positronenmessung
- Cu ist bei RT übersättigt, beginnt Ausscheidung
- Ergebnis: Bildung von leerstellenartigen Defekten bei erneuter Cu-Diffusion

 GaAs undot. mit 6e18 Cu; abgeschreckt

 temperaturabhängige Messungen

 nach verschiedenen Ausheilschrit

Bestimmung des Defekttyps

- Bildung dieser Cluster ist unabhängig von Dotierung (Te)
- identisches Verhalten auch in undotiertem GaAs
- zunächst ist Defekt-LD bei ca. 250 ps (Einzelvakanz)
- bei Temperung wird LD größer: 320-350 ps entspricht etwa Doppelvakanz
- bei 800 K: τ₂ > 450 ps: große
 Leerstellenagglomerate (n > 10)

Voids in GaAs

- mittels molekulardynamischer Clusterrechnungen wurde Energiegewinn durch Clusterung von Einzelleerstellen berechnet
- Relaxation wurde berücksichtigt
- besonders günstig: 12 Leerstellen
- Positronenlebensdauer wurde berechnet
- stabiler 12-er Cluster zeigt Positronenlebensdauer von ca. 450 ps
- Übereinstimmung mit Experiment
- aber: Cu-Dekoration nicht berücksichtigt

TEM Staab et al., Physica B 273-274 (1999) 501-504

Doppler-Koinzidenzmessungen an GaAs:Cu

- im Hochimpulsbereich (>10⁻² m_oc) dominiert die Annihilation mit Core-Elektronen
- Impulsverteilung dieser Elektronen entspricht der der Atome
- ist relativ einfach auszurechnen
- im Beispiel: durch Lebensdauer detektierte Leerstellencluster haben Cu-Atome als nächste Nachbarn in unmittelbarer Umgebung

K. Petters, 2001, unveröffentlichte Ergebnisse

Zn-Diffusion in GaP

- Experimente in Kooperation mit Univ. Münster
- Zn wurde bei unterschiedlichen Bedingungen in GaP eindiffundiert
- sehr deutliche Effekte
- Leerstellenkonz. teilweise > 10¹⁸ cm⁻³
- offenes Volumen: Einfachleerstelle
- in Probe Zn86 ist detektiertes offenes Volumen kleiner als in Zn69
- Untergitter der Leerstelle ??
- isolierte P-Leerstelle sollte nicht detektierbar sein (ist positiv)

• Dopplerkoinzidenz-Messungen zeigen keinen Hinweis auf Vac-Zn-Komplexe

GaAs: Temperung unter definiertem As-Partialdruck

- Zweizonen-Ofen: Kontrolle der Probentemperatur und des As Partialdrucks
- ist notwendig für definierten Zustand im Dampfdruckdiagramm

H. Wenzl et al., J. Cryst. Growth 109, 191 (1991).

Experimente in n-GaAs

Vergleich zu undotiertem GaAs

Defekte nach Selbstimplantation in Si – der $R_p/2$ Effekt

- nach Hochenergie-Selbstimplantation von Si (3.5 MeV; 5 ×10¹⁵ cm⁻²) und RTA Ausheilung (900°C, 30s): zwei neue Getterzonen bei R_p und R_p/2 (R_p = projected range of Si⁺)
- findet man mit SIMS nach Cu-Kontamination von der Rückseite und Diffusions-Temperung

- bei R_p: gettern durch interstitielle Versetzungsringe (gebildet durch Überschuss-Si während RTA-Ausheilung)
- aber keine Defekte mit TEM bei R_p/2 sichtbar
- Welcher Natur sind diese Defekte?

Verbesserte Tiefenauflösung mit dem Münchener Positronen-Raster-Mikroskop

Erstes Defekt-Tiefenprofil mit dem Positronenmikroskop

- 45 Lebensdauer-Spektren entlang Keil entsprechen Tiefenauflösung von 155 nm (α = 0.81°)
- Positronenenergie 8 keV ⇒ mittlere Eindringtiefe 400 nm
- ergibt optimale Tiefenauflösung
- beide Defekt-Regionen gut sichtbar:
 - Leerstellencluster mit ansteigender Dichte bis 2 μ m (R_p/2 region)
 - in R_p Region: Lebensdauer τ₂ = 330 ps; offenes Volumen entspricht dem einer Doppelleerstelle; muss durch Versetzungsringe stabilisiert werden

R. Krause-Rehberg et al., Appl. Phys. Lett. 77 (2000) 3932

Zusammenfassung und Ausblick

- Positronen sind besonders empfindlich für leerstellenartige Defekte
- untere Nachweisgrenze beginnt etwa bei 10¹⁵ cm⁻³ (in Si)
- viele weitere Anwendungsfelder: Polymere, Defekte beim Sintern, Keramiken, ...
- in der Zukunft brauchen wir intensivere Positronenquellen f
 ür Nutzergruppen
- FRM-II in Garching und EPOS am FZ Rossendorf

Vortrag als PDF-File: http://positron.physik.uni-halle.de

