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Controlled pore glass - CPG
VYCOR-Process

alkali borosilicate

ExtractionT
l

HCl/NaOH530 – 710°C
glass

ddPP 1 to 110 nm1 to 110 nm
spinodal phase separationspinodal phase separation
decomposition is initiated by heat treatment
alkali rich borate phase <-> pure silica
alkali phase soluble in acid -> silica networkalkali phase soluble in acid -> silica network
pore size depends on basic material
porosity of 50 %
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Controlled pore glass - CPG

different geometries 
possiblep

homogenous 
microstructure

controlled pore size
microstructure

uniform pore size
we can choose d (!)
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Principles of PALS: pick-off annihilationPrinciples of PALS
pick-off annihilation:

o-Ps captures e- with anti-parallel spin
h  d i  lli i  t ll  f 

positrons from 22Na: 
thermalize, diffuse, being 
trapped and annihilate

happens during collisions at walls of pore
lifetime (τ) decreases rapidly
τ is function of pore size: 1.5 - 142 ns

pp
OR: positrons form Ps

p
also for closed pore systems25 %

75 %

positronium: 
p-Ps -> short self annihilation   

lifetime of 0.125 ns
o-Ps -> long self annihilation 

lifetime of 142 ns (3γ)
-> pick off annihilation (2γ)
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Principles of PALS: typical spectrum
typical lifetime spectrum for CPG (here d = 20 nm):

4 ti l d  t4 exponential decay components

p-Ps -> 0.125 ns

free positrons ~ 0.5 ns

o-Ps in disordered structure ~ 1.5 ns

o-Ps in pores

analysis with LT9 (LifeTime)analysis with LT9 (LifeTime)
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Extended Tao Eldrup model 
extended TE model (calculations by EELViS):

quantum well of infinite height, but: overlap of o-Ps wave function and wall of pore -> δ
Boltzmann statistics ascribes explicit temperature dependence to the lifetimep p p
integrals of spherical / cylindrical Bessel functions
δ = 0.19 nm 
mean free path D = 4V/S = dcyl, diameter of cylinder 

 f  th D  4V/S  2/3 d  di t  f hmean free path D = 4V/S = 2/3 dsphere, diameter of sphere
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The experiments at T = 300 K

we measured CPG in a broad 
pore size rangepore size range

given pore sizes obtained by 
N2-adsorption or Hg-intrusionN2 adsorption or Hg intrusion

cubic and spherical model not 
sufficient for small poresp

cylindric model with           
δ = 0.193 nm best fit for our 
CPG -> calibration curve for 
calculating pore size 

works well for RT,  other T ? 
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The T-dependence
calculations: cylindric model 
with δ = 0.193 nm
lth h  f d d although we found good 

agreement for T > 300 K 
temperature behavior can not 
be explained very well at low p y
temperatures
for 20 nm catching effect of   
o-Ps at low temperatures (v. d. 

l   “ ll  d ”)     Waals power, “capill. cond.”),    
o-Ps bonds at the wall
for small pores -> thermal 
activated surface atoms > low activated surface atoms -> low 
T causes larger effective pore 
size (Ganguly et al. PPC8) 

model still too simple but works 
well for room temperature
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Pore size distribution

D τ4 σ4
1.8 nm 21.1 ns 14.8 ns
2.5 nm 46.9 ns 17.6 ns
4 5 nm 65 9 ns 18 9 ns4.5 nm 65.9 ns 18.9 ns
6.2 nm 80.0 ns 19.3 ns

and its distribution by τ4 and its distribution σ4 by 
analysis of truncated spectra 
starting from 20 ns

problem of LT: limit of 142 ns 
is not taken into account, for 
large pores unphysically large σ4

distribution for 4 smaller 
selected pores
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Pore size distribution
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Pore size distribution
distribution norm. to 1

arrows show d directly 
calculated from mean o-Ps 
lifetime using cylindric model 
(1.77 nm, 3.09 nm, 4.38 nm and 
5.80 nm)

this distribution contains the 
true variation of pore sizes true variation of pore sizes 
but also the effect of 
irregular not linear character 
of poresof pores

long tail for larger pores:

overestimation of α4(τ)f 4( )

nonlinear char. τ4 vs. d 
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Phase transition of CO2
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we fill / degas in steps of 100 mbar

phase transition from gas to solid, p0 ~ 300 mbar at 180 K

we observe nearly no difference between adsorption and desorption curves 
for p > p0, small hysteresis in the end -> desorption of CO2 very easy

no complete pore filling because of pore blocking effect 
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no complete pore filling because of pore blocking effect 



Phase transition of N2  
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we fill / degas in steps of 100 mbar

phase transition from gas to a liquid, p0 ~ 1000 mbar at 77 K

we observe a huge difference between adsorption and desorption curves,   
at 0 mbar shortest lifetime -> desorption of N2 not possible at 77 K

T-dep  desorption shows interesting behavior  also for other pore sizes 
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T dep. desorption shows interesting behavior, also for other pore sizes 
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Summary
for T = 300 K we found a calibration curve for CPG

non-destructive porosimetry tool for open and closed pore-systems
most sensitive for d = 0.5 … 10 nm

for pores d < 10 nm we can calculate a pore size distribution
first measurements on phase transition of gas in CPG
near future: 

SBA-15 (to be presented @ COPS VIII Edinburgh / Scotland, June 2008)
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