Progress of the Intense Positron Beam Project EPOS

R. Krause-Rehberg¹, G. Brauer², M. Jungmann^{1,2}, A. Krille^{1,2} A. Rogov² and K. Noack²

¹Martin-Luther-University Halle-Wittenberg

²Research Center Dresden-Rossendorf

- System Setup
- Electron-Positron Converter
- Positron Extraction
- Chopper / Buncher System
- Radiation Shielding

The EPOS (ELBE Positron Source) project at Research Center Dresden-Rossendorf

- Radiation source ELBE = Electron Linac with high Brilliance and low Emittance
- Primary electron beam (40 MeV x 1 mA = 40 kW)
- Time structure: infinite sequence of very short electron bunches (cw-mode)
- Spot size: 5mm diameter

electron bunch structure

The EPOS (ELBE Positron Source) project at Research Center Dresden-Rossendorf

- Radiation source ELBE = Electron Linac with high Brilliance and low Emittance
- Primary electron beam (40 MeV x 1 mA = 40 kW)
- Time structure: infinite sequence of very short electron bunches (cw-mode)

Ground plan of the ELBE hall

Ground plan of the ELBE hall

Position of e⁺ **converter**

Water cooling system

Directly water-cooled Electron-Positron Converter

- stack of 50 pieces W-foils 0,1 mm separated by 0,1 mm -> 13,5 l water at 1,5 bar
- foils cut by IR-laser in our workshop

Directly water-cooled Electron-Positron Converter

Directly water-cooled Electron-Positron Converter

Simulation of Energy deposition

Positron extraction electrodes

Simulation of positron extraction

- simulation done by EGUN
- area of 20 mm diameter at moderator is used and squeezed to about 2 mm

Positron extraction electrodes

mj005_se_53x_04.06.2007

1mm

Magnetic Beam Guidance System

Magnetic Beam Guidance System

Magnetic field of 75 Gauss provides by long coils and Helmholtz coils

- 45 coils but only
- 5 different currents
- 5 Power supplies
- maximum change 6 G
- gradient < 0.11 G/mm

30 pairs of steering coils with different (computerdriven) current sources

Chopper

Radiation Protection

- Rather important dose rate < 0.5 μ Sv/h at any point outside of room 111b (also on ceiling)
- This corresponds to 1 mSv/2000 h which is the lowest level in radiation protection (normal environment)
- Does not require any measures of radiation protection

Simulation of expected γ and n dose

Detector system (see talk Do-4 Arnold Krille)

- 3 experiments: lifetime spectroscopy (8 BaF₂ detectors); Doppler coincidence (2 Ge detectors), and AMOC (1 Ge and 1 BaF₂ detector)
- complete digital detection system:
 - lifetime: almost nothing to adjust; time scale exactly the same for all detectors; easy realization of coincidence
 - Doppler: better energy resolution and pile-up rejection expected
 - pulse-shape discrimination improves spectra quality

Conclusion

• System ready for installation at FZD in autumn 2007

- See the talk Do-4 of Arnold Krille tomorrow afternoon "Digital positron lifetime spectroscopy at EPOS"
- please visit our poster Bp-2 by Marco Jungmann "Construction and Timing System of the EPOS Beam System"

• This presentation can be found at http://positron.physik.uni-halle.de

