The local Free Volume in Polymers studied by Positron Annihilation Lifetime Spectroscopy (PALS)

Structure of the free volume

- free volume due to structural, static or dynamic, disorder
- important for several macroscopic properties of these materials,
- viscosity, molecular transport, structural relaxation, and physical aging

Schematic representaion of a single Poly (Propylene) microstructure (X=76)

(Simulation, Theodoru et al. 1985)

Experimental Ways to determine Free Volume in Polymers

- Positron Annihilation Lifetime Spectroscopy (PALS)
 - Detection of subnanometric local free volumes (holes):
 Size distribution (mean hole volume <v_h> and mean dispersion σ_h)
- **Pressure-Volume-Temperature-Experiments (PVT)** Analysis by Simha-Somcynsky lattice-hole model EOS
 - Fraction of vacancies h, specific hole free. $V_f = hV$, and occupied volumes, $V_{occ} = (1-h)V$
- Correlation of PALS and PVT
 - allows estimation of PALS hole density $V_f = N_h' \langle v_h \rangle$

 \rightarrow All parameters of the structure of hole free volume can be obtained from PALS and PVT

Basics of PALS

- β^+ decay: ²²Na \rightarrow ²²Ne + β^+ + ν_e + $\gamma_{(1.27MeV)}$ (half life: 2.6 years, up to 10⁶ e⁺/s)

- Thermalization
- Diffusion
- Annihilation

Basic Principles and Theories of Positron formation in Polymers

Ps Formation in Polymers

Pick-Off Annihilation

Ps localization in a hole of the (excess) free volume

Ps localization in interstitial free volume gives the packing coefficient 'C' of the crystals

Theory of Tau-Eldrup (TE) Model

Typical PALS Spectrum

 $n(t) = I_1 \exp(-t/\tau_1) + I_2 \exp(-t/\tau_2) + I_3 \exp(-t/\tau_3)$

The Positron Lifetime Measurement

- Positron lifetime is measured as time difference between 1.27 MeV quantum (β^* decay) and 0.511 MeV quanta (annihilation process)
- PM=photomultiplier; SCA=single channel analyzer (constant-fraction type);
 TAC=time to amplitude converter; MCA= multi channel analyzer

Typical Lifetimes in Holes of:

Analysis of COC and PC by PALS

Cyclic Olefin Copolymer (COC)

Poly Carbonate (PC)

The specific total, *V*, (black open symbols), and occupied, $V_{occ} = (1 - h)V$ (blue symbols) volume as a function of temperature *T* and as selection of isobars (*P* in MPa) for COC and PC.

The specific hole free volume $V_f = hV$ as a function of temperature *T* and as selection of isobars (*P* in MPa) for COC and PC.

The mean, τ_3 , and the mean dispersion, σ_3 , of o-Ps lifetimes as a function of temperature *T* for densified at 200 Map (blue), gas-exposed (read) and untreated (black) COC and PC.

The Ps yield $P = I_1 + I_3$ with $I_1/I_3 = 1/3$ as a function of temperature *T* for densified at 200 Map (blue), gas-exposed (read) and untreated (black) COC and PC.

The mean, $\langle v_h \rangle$, and the mean dispersion, σ_h , of the hole volume as a function of temperature *T* for densified at 200 MPa (blue), gas-exposed (red) and untreated (black) COC and PC.

The specific free volume $V_f = \langle v_h \rangle N_h$ ' from PALS at 10⁻⁵ Pa as a function of temperature for untreated (black filled circles), densified at 200 MPa (blue squares), and gas-exposed (read diamonds) COC and PC. The black empty circles show 0.1 MPa isobars from PVT experiments for the untreated polymers, $V_f = hV$.

Thanks for your time and patience!