R. Krause-Rehberg

Universität Halle, Department of Physics

- Historical remarks about positrons
- Defect detection by positrons
- Non-destructive testing in Steel

Martin-Luther-Universität Halle-Wittenberg

Discovery of the Positron

- Positron was predicted in 1928 by Paul A.M. Dirac
- Discovery in 1932 in cloud chamber pictures by C.D. Anderson

C.D. Anderson

- Positronium as bound state of eand e⁺ lightest atom was predicted (1934) and discovered (1951)
- Annihilation in matter was studied beginning in the 40th
- Positrons can be obtained by
	- pair production from gamma radiation (E $_{\gamma}$ > 1022 keV)
	- β ⁺ decay from isotopes (mostly 22Na)

- first Identification of a positron in a cloud chamber
- 5 mm lead plate
- photo taken by C.D. Anderson

Electron structure of solids can be discovered

- during annihilation: conservation laws must be fulfilled (energy, momentum)
- electron momentum distribution can directly be measured
- 2D-ACAR: two-dimensional (position-sensitive) detectors
- measurement of single crystals in different directions:
- reconstruction of Fermi surface possible

2D-ACAR of Copper

Fermi surface of copper

⁽Berko, 1979)

Positrons are sensitive for Crystal Lattice Defects

- 1950…1960: in addition to ACAR -> different experimental techniques were developed
- Positron lifetime spectroscopy and Doppler broadening spectroscopy
- end of 60s: lifetime is sensitive to lattice imperfections
	- Brandt et al. (1968): **vacancies in ionic crystals**
	- Dekhtyar et al. (1969): **plastically deformed semiconductors**
	- MacKenzie et al. (1967): **vacancies in thermal equilibrium** in metals
- Positrons are localized (trapped) by openvolume defects

FIG. 1. Positron mean lifetimes in several metals as a function of temperature.

Vacancies in thermal Equilibrium

Determination of Vacancy Formation Enthalphy

THERMAL VACANCIES IN THE NOBLE METALS Cu, Ag, Au, AND IN Pt **STUDIED BY POSITRON LIFETIME SPECTROSCOPY**

H. E. Schaefer¹, W. Stuck¹, F. Banhart², and W. Bauer

¹Universität Stuttgart, Institut für Theoretische und Angewandte Physik, Pfaffenwaldring 57, D-7000 Stuttgart 80, ²Max-Planck-Institut für Metallforschung, Institut für Physik, Heisenbergstr. 1, D-7000 Stuttgart 80, Fed. Rep. of Germany

Study of non-equilibrium Defects

PHYSICAL REVIEW B

VOLUME 25, NUMBER 2

15 JANUARY 1982

Vacancies and carbon impurities in α -iron: Electron irradiation

A. Vehanen, P. Hautojärvi, J. Johansson, and J. Yli-Kauppila Laboratory of Physics, Helsinki University of Technology, SF-02150 Espoo 15, Finland

P. Moser

Section de Physique du Solide, Département de Recherche Fondamentale, Centre d'Etudes Nucléaires de Grenoble, 85 X, 38041 Grenoble Cédex, France

FIG. 1. Positron-lifetime spectra after sourcebackground subtraction in electron-irradiated (6×10^{18}) e^- /cm²) high-purity iron at various stages of isochronal annealing. The dramatic occurrence of a long-lifetime component after 230 K annealing is clearly visible.

- positron lifetime is very sensitive for vacancy-type defects
- here: lifetime increases after irradiation
- and further increase after first annealing: vacancy clustering

The positron lifetime spectroscopy

22Na

- positron wave-function can be localized in the attractive potential of a defect
- annihilation parameters change in the localized state
- e.g. positron lifetime increases in a vacancy
- $\gamma_{0.511\text{ MeV}}$ lifetime is measured as time difference between appearance of 1.27 (start) and 0.51 MeV (stop) quanta
	- defect identification and quantification possible

atomic open-volume defects

non-open volume defects

large open volume 1…50 nm (Positronium formation)

- vacancies $(p_v > 10^{-7})$
- vacancy clusters $(n=1...50)$
- dislocations $(>10^8 \text{ cm}^{-2})$
- grain boundaries (only ultra-fine grained materials)
- surface
- coherent precipitates (e.g. GPZ in Al-Zn)
- negatively charged acceptors in semiconductors ("shallow traps")
- open volume between molecular chains in polymers (> 100 Å $^3)$
- mesoporous dielectrica $(1 \text{ nm} \cdot d_{\text{pore}} \cdot 50 \text{ nm})$

Positron lifetime spectroscopy

Positron lifetime: time difference between 1.27 MeV and 0.511 MeV quant**a**

Digital lifetime measurement

- much simpler setup
- timing very accurate
- pulse-shape discrimination (suppress "bad pulses")
- each detector for start & stop (double statistics)

screenshot of two digitized anode pulses

Positron lifetime spectroscopy

- positron lifetime spectra consist of exponential decay components
- positron trapping in open-volume defects leads to long-lived components
- longer lifetime due to lower electron density
- analysis by non-linear fitting: lifetimes τ_i and intensities I_i

positron lifetime spectrum:

trapping coefficient

$$
\mathcal{K}_{\mathrm{d}} = \mu C_{\mathrm{d}} = \frac{I_2}{I_1} \left(\frac{1}{\tau_{\mathrm{b}}} - \frac{1}{\tau_{\mathrm{d}}} \right)
$$

trapping rate defect concentration

Theoretical calculation of vacancy clusters in Si

- there are cluster configurations with a large energy gain
- "Magic Numbers" with 6, 10 und 14 vacancies
- positron lifetime increases distinctly with cluster size
- for $n > 10$ saturation effect, i.e. size cannot be determined

T.E.M. Staab et al., Physica B 273-274 (1999) 501-504

Vacancy clustering during defect annealing

- electron irradiated 5N-Fe
- clustering in early stage can be observed
- very sensitive: formation of divacancies and small clusters (n < 10)

FIG. 2. Positron-lifetime parameters as a function of the isochronal annealing temperature in the low-dose electron-irradiated pure iron.

Vehanen et al., Phys. Rev. B 25, 762–780

Defects in electron-irradiated Ge

- Electron irradiation (2 MeV @ 4K) induces Frenkel pairs (vacancy interstitial pairs)
- steep annealing stage at 200 K
- at high irradiation dose: divacancies are formed (thermally more stable)

(Polity et al., 1997)

Defects in Iron after tensile Strength in Stress-Strain Experiment

- extensive study of defects in mechanically damaged iron and steel
- sensitive: detection of defects already in the elastic Hooke's range
- Vacancy cluster and dislocations are detectable in both cases
- small vacancy clusters are generated by jog dragging process

C₂₉₂ Jog

Somieski et al., J. Physique IV 5, C1/127-134 (1995)

Vacancy

clustering

Screw

dislocation

Comparison of Iron and different Steels

- samples were annealed before the stress-strain experiments
- strain normalized to fracture strain
- strongest effect for small strain

B. Somieski Dissertation 1996

Laterally resolved measurement across Test sample

- Pure Fe sample
- strong damage already for strain < 100% of Hooke"s range -> technically most interesting range
- fraction zone can be predicted from positron measurements

Somieski et al., J. Physique IV 5, C1/127-134 (1995)

Measurements live at testing machine

• measurements were partly performed during stress-strain and fatigue experiments directly at testing machine

Fatigue experiments in Fe and steels

- measurement during fatigue experiment: up to $10⁷$ fatigue cycles in 11 days
- example: pure iron; σ_{max} = 94 MPa (80% of Hooke's range)
- sample remains in state of endurance (no fracture) -> and lifetime stays constant

Somieski et al., J. Physique IV 5, C1/127-134 (1995)

- set of samples was available for positron measurements (from IzfP Saarbrücken)
- component lifetime prediction seems to be possible

B. Somieski, Dissertation 1996

Defect detection after Surface Laser Hardening

Somieski et al., J. Physique IV 5, C1/127-134

- Fe and different steels were treated by a 1.3 kW Laser in vacuum
- Laser spot 1 cm; velocity of Laser spot 0.3…1 m/min
- energy density: 10...30 MJ/m²
- strong increase of positron lifetime in all steels due to defect generation during fast cooling
- Ck… Fe-C steel without any further alloying element
- Ck60 means $Fe_{99.4}$ - $C_{0.6}$
- interesting: Fe does not show any defect generation obviously no generation of dislocations

Comparison of Positron Lifetime with Vicker's Hardness

- measurement of Vickers's hardness and positron lifetime across a laser trace at Ck60 steel
- generation of dislocations leads to increase of hardness (desired effect)
- positron lifetime increases strongly
- positrons detect dislocations and small vacancy clusters

Position of Positron Source [mm]

Somieski et al., Mat. Sci. Forum **255-257**, pp584 (1997)

Non-destructive testing outside the lab

- problem: only one "sample" instead of "sandwich geometry"
- positron source is covered by standard backsample (e.g. pure iron or Si)
- this part of spectrum must be subtracted before data evaluation
- is standard procedure when only one sample exist

Modified positron lifetime spectrometer for in-Figure 1 the-field mapping.

Somieski et al., J. Physique IV 5, C1/127-134 (1995)

Moderation of Positrons

Mean implantation depth of un-moderated positrons from a ²²Na isotope source $(1/e)$ for Si: $50 \mu m$

Moderation of Positrons

moderation efficiency: $\approx 10^{-4}$

The Positron Beam System at Halle University

Defects in Si induced by Ion Implantation

- ion implantation is most important doping technique in planar technology
- main problem: generation of defects \Rightarrow positron beam measurements

Study of Lubrication Defects

Tribology Letters Vol. 11, No. 1, 2001

- Study of defects after lubrication treatment
- Steel ball on Cu surface
- effect of lubricant

Subsurface zones created under lubrication conditions studied by positron annihilation

J. Dryzek^a, E. Dryzek^a, F. Börner^b and R. Krause-Rehberg^b

^a Institute of Nuclear Physics, ul. Radzikowskiego 152, 31-342 Kraków, Poland ^b Universität Halle, Fachbereich Physik, D-06099 Halle/S, Germany

Received 11 August 2000; accepted 22 February 2001

29

EPOS = ELBE Positron Source

- ELBE -> electron LINAC (40 MeV and up to 40 kW) in Research Center Dresden-Rossendorf
- EPOS -> collaboration of Univ. Halle with FZD
- EPOS will be the combination of a positron lifetime spectrometer, Doppler coincidence, and AMOC
- User-dedicated facility
- main features:
	- high-intensity bunched positron beam $(E_{+} = 0.5...30$ keV)
	- very good time resolution by using the unique primary time structure of ELBE
	- digital multi-detector array
	- fully remote control via internet by user

Concept of EPOS (ELBE Positron Source)

MePS

Mono**e**nergetic **P**ositron **S**pectroscopy

- Cave 111b / Lab 111d
- monoenergetic (slow) positrons
- pulsed system
- LT, CDBS, AMOC
- Still under construction

CoPS

Conventional **P**ositron **S**pectroscopy

- LT, CDBS, AMOC
- using ²²Na foil sources
- He-cryostat
- automated system
- digital detector system

GiPS

Gamma-**i**nduced **P**ositron **S**pectroscopy

- Cave 109 (nuclear physics)
- Positron generation by Bremsstrahlung
- Information in complete bulky sample (up to 100 cm^3)
- all relevant positron techniques (LT, CDBS, AMOC)

Information Depth: $0...5 \mu m$

Information Depth: 10…200 µm

Information Depth: 0.1 mm …5 cm

Ground plan of the ELBE hall

Progress of Mono-energetic Positron Beam

 \circ 40 MeV, 1 mA, 26 MHz repetition time in cw mode; lifetime, CDBS and AMOC with slow e^+

o Retain original time structure for simplicity and best time resolution

Electron-Positron Converter is finished in Cave 111b

MePS at EPOS still under Construction

In a

Gamma-induced Positron Spectroscopy

Nuclear Instruments and Methods in Physics Research A 495 (2002) 154-160

NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH Section A

www.elsevier.com/locate/nima

Bremsstrahlung-induced highly penetrating probes for nondestructive assay and defect analysis

F.A. Selim^{a,*}, D.P. Wells^a, J.F. Harmon^a, J. Kwofie^a, R. Spaulding^a, G. Erickson^b, T. Roney^c

^a Idaho Accelerator Center, Idaho State University, Campus Box 8263, Pocatello, ID 83209, USA ^b Boise State University, Boise, ID 83725, USA ^c Idaho National Engineering and Environmental Laboratory, Idaho Falls, ID 83415, USA

Received 16 April 2002; received in revised form 13 August 2002; accepted 20 August 2002

Setup extended by BaF² detectors for lifetime measurement

- 3 coincident setups were used: 2 AMOC and 1 CDBS spectrometer; only coincident detection ensures high spectra quality
- all scattered quanta appear within positron lifetime time coincidence alone does not reduce background at all
- but distance helps: for 2 x 511 keV quanta in coincidence the distance dependence is proportional to r^{-2}
- for arbitrary scattered gamma it is $\propto r^{-4}$

The GiPS setup includes 6 Detectors (4 Ge and 2 BaF²)

Coincident lifetime spectrum: annealed Fe

- here coincidence with Ge detector
- spectrum is projection to the time scale of AMOC spectrum
- Count rate for AMOC spectrum = 320 /s
- One spectrum in 2h
- Time resolution $= 210$ ps
- BG/Peak = $1.7 \times 10-5$
- 350 ps & 1.5 ns: annihilation at vacuum tube (polyethylene)

Comparison: GiPS spectrum with conventional measurement

- same sample material almost same statistics, similar time resolution
- conventional measurement with ²²Na source 20 μ Ci (0.7 MBq) in sandwich geometry
- advantage of periodic positron source is obvious: background distinctly reduced
- result of spectra analysis is the same: 107 ps (bulk value for Fe; corresponds to literature)

Comparison annealed and deformed Fe

- two mechanically identical samples were prepared
- Fe annealed (1100°C; 2h in vacuum) and Fe (50% thickness reduction by cold rolling)
- spectra were easily decomposed
- expected results: annealed sample one component 107 ps; deformed sample has 158 and 401 ps (dislocations and small vacancy clusters)

Applications of GiPS since begin of 2009

- neutron irradiated Fe-Cr alloys (highly activated up to 50 MBq ⁶⁰Co)
- Reactor pressure vessel steel samples from Greifswald nuclear power station
- Iron samples after mechanical damage (LCMTR-ISCSA-CNRS, Frankreich)
- set of Zircony alloys (Collaboration Mumbai/India)
- porous glass (Chem. Department/Univ. Leipzig)
- biological samples
- liquids

Lateral Resolution with Scanning Positron Microscope

- lateral resolution 1...2 μ m
- Positron lifetime spectroscopy
- lateral resolution principally limited by positron diffusion $(L₊ \approx 100$ nm)

W. Triftshäuser et al., NIM B **130** (1997) 265

SPM on top of cracked sample

SPM: Lifetime-Image of Fatigue-Crack in Al 6013

resolution 5 μ m; step-size 10 μ m

Positron Annihilation Spectroscopy: Applications

Variety of applications in all fields of materials science:

- bulk defects in semiconductors, ceramics and metals
- defect-depth profiles due to surface modifications (ion implantation; tribology)
- epitaxial layers (growth defects, misfit defects at interface, …)
- soft matter physics (open volume; interdiffusion; …)
- porosimetry 1…50 nm (e.g. low-k materials highly porous dielectric layers)
- fast kinetics (e.g. precipitation processes in Al alloys; defect annealing; diffusion; …)
- radiation resistance (e.g. space materials)
- many more …

