EPOS – an intense positron beam project at the Research Center Rossendorf

R. Krause-Rehberg¹, G. Brauer², S. Sachert¹, V. Bondarenko¹, A. Rogov², K. Noack²

¹Martin-Luther-University Halle

²Research Center Rossendorf

The EPOS positron source at Research Center Rossendorf

- Main experiment in Rossendorf: Radiation source ELBE = Electron Linac with high Brilliance and low Emittance
- Primary electron beam (40 MeV x 1 mA = 40 kW)
- Main goal: IR Free-electron Laser
- Very interesting time structure: cw-mode of short bunches

EPOS = ELBE Positron Source

- Intense beam of slow (monoenergetic) positrons
- All relevant positron techniques for materials research (positron lifetime, Coincidence Doppler broadening, AMOC)
- EPOS is external facility of Martin-Luther-University Halle at Research center Rossendorf
- User-dedicated facility
- Remote controlled via internet
- Financing by University Halle, Land Sachsen-Anhalt and European Community

Ground plan of the ELBE hall

Positron Lab

 positron lab in ELBE hall already available

Positron Lab 🦳

X-ray Lab

concrete screening of Cave 111b (location of e⁺ converter)

3,2 m concrete screening of Cave 111b cable tunnel to be used for e⁺ beamline

0.0.0 0.0

photo taken in November 2003

Directly water-cooled Electron-Positron Converter

- first attempt: porous W (30 % porosity) -> too low water flux at 10 bar
- stack of 50 pieces W-foils 0,1 mm separated by 0,1 mm -> 13,5 l water at 1,5 bar
- foils cut by IR-laser in our workshop

Simulation of positron extraction

- simulation done by EGUN
- area of 20 mm diameter at moderator is used and squeezed to about 2 mm

EPOS scheme

Magnetic Beam Guidance

Magnetic field of 75 Gauss

Martin-Luther-Universität Halle

- Simulation of bunching by POSBUNCH
- C++ author: V. Bondarenko
- source code available on request

Simulation of Buncher Voltages

Both buncher RF-voltage amplitudes and the drift path energy must be adjusted for each beam energy for optimum time resolution

Detector system

- 3 experiments: lifetime spectroscopy (8 BaF₂ detectors); Doppler coincidence (2 Ge detectors), and AMOC (1 Ge and 1 BaF₂ detector)
- digital detection system:
 - lifetime: almost nothing to adjust; time scale exactly the same for all detectors; easy realization of coincidence
 - Doppler: better energy resolution and pile-up rejection expected
 - pulse-shape discrimination improves spectra quality

Simulation of Positron distribution

Simulation of Energy deposition

Simulation of Positron Energy Distribution

primary electron beam 40 MeV

Martin-Luther-Universität Halle

Simulation of expected γ and n dose

Screening by lead blocks, Polyethylene bricks and heavy concrete

	1. Year	2. Year	3. Year
Laboratory			
Simulation e ⁺ converter			
Simulation beam			
Converter chamber and vacuum system in tunnel			
Screening of converter chamber			
First chopper / buncher			
Test converter / beam transport			
Vacuum system completion			
Conventional source chamber			
2. Chopper / buncher			
Sample chamber			
Completion of beam electronics			
Test transport system			
Detector system and software			
Automation			
Software lifetime / Doppler spectra			
Optimization of time resolution			

