Application of Positron Annihilation for defects investigations in thin films

V. Bondarenko, R. Krause-Rehberg

Martin-Luther-University Halle-Wittenberg, Halle, Germany

Outlook:

- Introduction to Positron Annihilation
- Methods
 - Positron lifetime spectroscopy
 - Doppler broadening spectroscopy
- Applications to thin films
 - Slow positron beam
 - Positron microscopy

Positron Annihilation.net

Positron – the first discovered antiparticle

D.A.M. Dirac

predicted the existence of a positron in 1928 as an explanation of negative energy solutions of his equation: $E = \pm \sqrt{p^2c^2 + m^2c^4}$

Dirac D.A.M. (1928): Proc. Roy. Soc. 117, 610 (Nobel prize 1933)

C.D. Anderson

1932 discovers positrons in a cosmic ray event in a Wilson cloud-chamber

Anderson C.D. (1932): Science 76, 238 (Nobel prize 1936)

■ 1933 evidence of e⁺-e⁻ pair formation by registration of <u>annihilation</u> Gamma quanta

Application of Positron Annihilation

Materials

- Condensed matters (metals, semiconductors, polymers...)
- Liquids
- Gases

Sensitivity

- Vacancy-like defects and defect complexes
- Concentration limits 10¹⁴-10¹⁹ cm⁻³

Information

- Type of vacancy-like defects
- Chemical surrounding of a vacancy
- Vacancy-like defects depth profiling
- 3D-imaging using micro-beam

Ex: Laser hardening of Ck60-Steel

Positron in condensed matter

Thermalization

- energy loss through electron/phonon excitation
- 1 3 ps
- Penetration depth ≈ E/ρ

Diffusion

- $L_{+} \approx 100 \text{ nm}$
- Positron wave function in [110] plane of GaAs

e⁺

Annihilation

mainly with emitting of two γ-quanta

$$3g / 2g = 0.27\%$$

2γ-annihilation

- Sensitivity to electron momentum energy and momentum conservation leads to

 - Doppler broadening of annihilation line

angular correlation of annihilation radiation Doppler broadening of annihilation line
$$p_2 = m_0 c - 1/2 p_L \quad \mathbf{p_L}$$

$$p_T \mid \mathbf{p}_L \mid \mathbf{p}_T \mid \mathbf{$$

p – momentum of e+-e⁻ pair \mathbf{p}_1 , $\mathbf{p}_2 - \gamma$ -quanta's momentum

- Sensitivity to electron density
 - Positron Lifetime Spectroscopy (PALS)

positron diffusion: $L_{+} = \sqrt{D_{+}t_{b}}$ during τ_{b} – positron bulk lifetime annihilation rate:

 $\mathbf{I} = 1/\mathbf{t}_b = \mathbf{p} \cdot \mathbf{r}_0 \cdot c \int \mathbf{y}_+(\mathbf{r}) \mathbf{y}_-(\mathbf{r}) \mathbf{g} d\mathbf{r}$

the lower the electron density is, the higher is the positron lifetime

Positron trapping

Perfect lattice (GaAs plane [110])

- Positrons are repelled by positive atom cores
- Vacancy represents a positron trap due to the missing nuclei (potential well for a positron)

Positron Annihilation is sensitive to vacancylike defects

Because of reduced electron density positrons live longer in vacancies

Positron Annihilation Lifetime Spectroscopy (PALS)

Technique

- γ-detection: scintillator + photomultiplier
- Time between positron penetration and it's annihilation in a sample is measured
- 3-6×10⁶ are accumulated in a spectrum

n(0) = 1

Mathematics

probability $\mathbf{n(t)}$ that e^+ is alive at time \mathbf{t} : λ - positron annihilation rate

Positron lifetime spectrum in bulk:

$$n(t) = e^{-I_{bulk}t} \longrightarrow$$

slope of the exponential decay

$$\boldsymbol{I}_{bulk} = \frac{1}{\boldsymbol{t}_{bulk}}$$

 $=-\mathbf{1} n(t)$

dn(t)

 $\mathrm{d}t$

Positron Annihilation Lifetime Spectroscopy

Physics

- one-defect trapping model
- annihilation from bulk with $\lambda_b = 1/\tau_b \text{ s}^{-1}$
- trapping to vacancy-defect with K s⁻¹
- annihilation from the defect with $\lambda_d = 1/\tau_d$
- two-component lifetime spectrum

$$N(t) = I_1 / t_1 \exp(-t/t_1) + I_2 / t_2 \exp(-t/t_2)$$

- Information
- vacancy type (mono-, di-, vacancy cluster)
 τ₂ reflects the electron density
- defect concentration C

$$K = \frac{I_2}{I_1} \left(\frac{1}{\boldsymbol{t}_b} - \frac{1}{\boldsymbol{t}_2} \right) \approx C$$

trapping rate K trapping $\mathbf{l}_{d} = \frac{1}{\mathbf{t}_{d}}$ annihilation

Annihilation-Line Doppler broadening spectroscopy

Annihilation-Line Doppler broadening spectroscopy

Data Treatment

- Line Parameters
- "Shape" parameter

$$S = \frac{A_s}{A_0}, \ A_s = \int_{E_0 - E_s}^{E_0 + E_s} N_D dE$$

"Wing" parameter

$$W = \frac{A_{w}}{A_{0}}, \ A_{w} = \int_{E_{1}}^{E_{2}} N_{D} dE$$

Information

- Both S and W are sensitive to the concentration and defect type
- W is sensative to chemical surrounding of the annihilation site, due to high momentum of core electrons participating in annihilation
- V. Bondarenko, Martin-Luther-University, Halle, Germany

Positron source

lacksquare eta-decay of radioactive isotopes

Radionuclide	half-life	Maximum energy	γ-rays intensity
²² Na	2.6 years	545 keV	100 %
⁵⁸ Co	71 days	470 keV	99 %
⁶⁴ Cu	12.8 hours	1340 keV	0.5 %

Energy distribution after β+-decay

Moderation

Conventional positron beam technique

- Monoenergetic positrons are used
- Magnetically guided

Disadvantages

- no simple lifetime measurements and bad lateral resolution (0.5-1 mm)
- defect studies by Doppler-broadening spectroscopy
- characterization of defects only by line-shape parameters or positron diffusion length

Information from Doppler broadening spectroscopy

Positron implantation profile Makhov function:

$$P(z,E) = \frac{mz^{m-1}}{z_0^m} \left[-\left(\frac{z}{z_0}\right)^m \right]$$

S-E and S-W plots

- \overline{z} E = 1.5 keV15

 10 \overline{z} E = 3 keV05 \overline{z} E = 5 keV \overline{z} E = 10 keV0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 Depth z [µm]
 - Positrons annihilation sites:
 - surface
 - bulk
 - vacancy defect

Defect density as a function of deposited ion energy

Annealing behavior of defects

S. Eichler, PhD Thesis, 1997

- Annealing of defects in boron-implanted FZ-Si
- Main annealing stage at 730K
- but divacancies anneal at 550K
- larger clusters are the dominating defects

Positron lifetime beam

lifetime measurements are more difficult

a system of chopper and bunchers: short pulses of monoenergetic positrons

two systems are available till now:

Munich (Germany)

Tsukuba (Japan)

Lifetime measurements in SiC layer

- Si and B coimplantaion into SiC layers on Si
- Average positron lifetime behaves similar to S-parameter

Scanning positron microscope

- Variable energy micro-beam of monoenergetic positrons
- Lateral resolution of 2 μm is achieved
- Lifetime measurements at different beam energies are possible

Principle disadvantage: broad positron implantation profile at high energies

Electron and positron beam image of the surface of a test chip. Light area is SiO₂, dark area is platinum

Depth defect profiling with positron microbeam

Defects in high-energy self-implanted Si – The R_p/2 effect

- after high-energy (3.5 MeV) self-implantation of Si (5 × 10¹⁵ cm⁻²) and RTA annealing (900°C, 30s): two new gettering zones appear at R_p an R_p/2 (R_p projected range of Si⁺)
- visible by SIMS profiling after intentional Cu contamination

- at R_p: gettering by interstitial-type dislocation loops (formed by excess interstitials during RTA)
- no defects visible by TEM at $R_p/2$
- What type are these defects?

Interstitial type Vacancy type [3,4] [1,2]

- [1] R. A. Brown, et al., J. Appl. Phys. **84** (1998) 2459
- [2] J. Xu, et al., Appl. Phys. Lett. **74** (1999) 997
- [3] R. Kögler, et al., Appl. Phys. Lett. **75** (1999) 1279
- [4] A. Peeva, et al., NIM B **161** (2000) 1090

R_p/2 effect investigation

- Both defect regions are gut visible
 - vacancy clusters with increasing concentration up to 2 μm (R_D/2)
 - in R_p region: lifetime τ_2 =320 ps; open volume corresponds to divacancy; defects are stabilized by dislocation loops
- very good agreement with the SIMS profile of in-diffused Cu

R. Krause-Rehberg et al., Appl. Phys. Lett. 77 (2000) 3932

Positron lifetime image of fatigue crack with SPM

Conclusion

- positron annihilation is a sensitive tool for investigation of vacancylike defects in solids
- information on type and concentration of vacancies is received
- thin layers can be studied by mono-energetic positron beam
- improved defect depth profiling is possible by using positron microbeams
- microscopic observation of defects with scanning positron microscope is nowadays possible

This presentation can be found as a pdf-file on our Websites:

http://positron.physik.uni-halle.de http://PositronAnnihilation.net