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Positron – the first discovered antiparticlePositron Positron –– the first discovered antiparticlethe first discovered antiparticle

D.A.M. Dirac
predicted the existence of a positron in 1928 as 
an explanation of negative energy solutions of his
equation: 
Dirac D.A.M. (1928): Proc. Roy. Soc. 117, 610 (Nobel prize 1933)

C.D. Anderson 
1932 discovers positrons in a cosmic ray event in
a Wilson cloud-chamber
Anderson C.D. (1932): Science 76, 238 (Nobel prize 1936)

1933 evidence of e+-e- pair formation by 
registration of annihilation Gamma quanta
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Application of Positron AnnihilationApplication of Positron AnnihilationApplication of Positron Annihilation

Materials
Condensed matters 
(metals, semiconductors, polymers…)
Liquids
Gases

Sensitivity
Vacancy-like defects and defect complexes
Concentration limits 1014-1019 cm-3

Information
Type of vacancy-like defects
Chemical surrounding of a vacancy
Vacancy-like defects depth profiling
3D-imaging using micro-beam

mm

Ex: Laser hardening of Ck60-Steel
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Positron in condensed matterPositron in condensed matterPositron in condensed matter

Thermalization
energy loss through electron/phonon excitation
1 - 3 ps
Penetration depth ≈ E/ρ

Diffusion
L+ ≈ 100 nm
Positron wave function in [110] plane of GaAs

e+

e-

Annihilation
mainly with emitting
of two γ-quanta

%27.02/3 =γγ
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Sensitivity to electron momentum
energy and momentum conservation leads to

angular correlation of 
annihilation radiation
Doppler broadening of 
annihilation line

Sensitivity to electron density
Positron Lifetime Spectroscopy (PALS)

positron diffusion:                              during τb – positron bulk lifetime

annihilation rate:

2γ-annihilation22γγ--annihilationannihilation

Lpcmp 2/101 +=

Lpcmp 2/102 −= pL

ppT
θcmpT 0/≅Θ

rrr d)()(/1 0 γψψπτλ −+∫⋅⋅== crb

p – momentum of e+-e– pair

p1, p2 – γ-quanta's momentum

bDL τ++ =

the lower the electron density is, the higher is the positron lifetime
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Positron trappingPositron trappingPositron trapping

Perfect lattice (GaAs plane [110])

Mono-vacancy

Positrons are repelled by positive atom cores

Vacancy represents a positron trap due to the 
missing nuclei (potential well for a positron)

Positron Annihilation is sensitive to vacancy-
like defects

Because of reduced electron density positrons 
live longer in vacancies
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Positron Annihilation Lifetime Spectroscopy (PALS)Positron Annihilation Lifetime Spectroscopy (PALS)Positron Annihilation Lifetime Spectroscopy (PALS)

Technique
γ-detection: scintillator + photomultiplier
Time between positron penetration and 

it’s annihilation in a sample is measured
3-6×106 are accumulated in a spectrum

Mathematics
probability n(t) that e+ is alive at time t:

λ - positron annihilation rate
Positron lifetime spectrum in bulk:

t0

γ

γ

)(
d

)(dn
tn

t
t

λ−= 1)0( =n

tbulketn λ−=)(

bulk
bulk τ

λ
1

=

slope of the exponential decay



V. Bondarenko, Martin-Luther-University, Halle, Germany

Positron Annihilation Lifetime SpectroscopyPositron Annihilation Lifetime SpectroscopyPositron Annihilation Lifetime Spectroscopy

Physics
one-defect trapping model

• annihilation from bulk with λb=1/τb s-1

• trapping to vacancy-defect with K s-1

• annihilation from the defect with λd=1/τd

• two-component lifetime spectrum

Information
• vacancy type (mono-, di-, vacancy cluster)

τ2 – reflects the electron density
• defect concentration C
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Annihilation-Line Doppler broadening spectroscopyAnnihilationAnnihilation--Line Doppler broadening spectroscopyLine Doppler broadening spectroscopy

Doppler effect
electron momentum in propagation direction of 511 keV γ-ray leads to 
Doppler broadening of annihilation line
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E1-E2=pLc
E1, E2 – energy of γ quanta
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Technique
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Annihilation-Line Doppler broadening spectroscopyAnnihilationAnnihilation--Line Doppler broadening spectroscopyLine Doppler broadening spectroscopy

Data Treatment
Line Parameters

• “Shape” parameter

• “Wing” parameter
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Information
Both S and W are sensitive to the concentration and defect type
W is sensative to chemical surrounding of the annihilation site, due to 

high momentum of core electrons participating in annihilation
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Positron sourcePositron sourcePositron source

β-decay of radioactive isotopes

0.5 %1340 keV12.8 hours64Cu

99 %470 keV71 days58Co

100 %545 keV2.6 years22Na

γ-rays 
intensity

Maximum 
energy

half-lifeRadionuclide

Energy distribution after β+-decay Moderation

υ++→ +eNeNa 22
10

22
11

Ne22
10

Na22
11

τ1/2 = 3.7 ps

β+ 0.06 %

β+ 90.4 %, EC 9.5 %

γ 1274 keV
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Conventional positron beam techniqueConventional positron beam techniqueConventional positron beam technique

Monoenergetic positrons are used
Magnetically guided

Disadvantages
no simple lifetime measurements and bad lateral resolution (0.5-1 mm)
defect studies by Doppler-broadening spectroscopy
characterization of defects only by line-shape parameters 

or positron diffusion length
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Information from Doppler- broadening spectroscopyInformation from DopplerInformation from Doppler-- broadening spectroscopybroadening spectroscopy

Positron implantation profile
Makhov function:

Ion implantation in Si
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S. Eichler, PhD Thesis, 1997

S-E and S-W plots

Positrons annihilation sites:
• surface
• bulk
• vacancy defect
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Defect density as a function of deposited ion energyDefect density as a function of deposited ion energyDefect density as a function of deposited ion energy

• [defect] ~ dose0.5

• valid for RBS- and positron data

• only exception: Si self-implantation

• can be explained: extra Si atoms are 
interstitials and kill vacancies that 
are seen by positrons but not by RBS

RBS results

positron results

S. Eichler, PhD Thesis, 1997
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Annealing behavior of defectsAnnealing behavior of defectsAnnealing behavior of defects

• Annealing of defects in 
boron-implanted FZ-Si

• Main annealing stage at 
730K

• but divacancies anneal 
at 550K

• larger clusters are the 
dominating defects

S. Eichler, PhD Thesis, 1997
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Positron lifetime beamPositron lifetime beamPositron lifetime beam

lifetime measurements are more difficult

a system of chopper and bunchers: short 

pulses of monoenergetic positrons

two systems are available till now: 
• Munich (Germany)
• Tsukuba (Japan)

Munich system

n-type Si

Kögel et al., 
Mat. Sci. Forum 175 (1995) 107
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Lifetime measurements in SiC layerLifetime measurements in Lifetime measurements in SiCSiC layerlayer

Si and B coimplantaion
into SiC layers on Si

Average positron lifetime 
behaves similar to S-para-
meter

τ2 = 300±6 ps → small 
vacancy cluster defects

F. Redmann, PhD Thesis, 2003
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Scanning positron microscopeScanning positron microscopeScanning positron microscope

Variable energy micro-beam of 
monoenergetic positrons
Lateral resolution of 2 µm is 
achieved
Lifetime measurements at different  
beam energies are possible

Principle disadvantage: broad 
positron implantation profile at high 
energies

Electron and positron beam image of the 
surface of a test chip. Light area is SiO2, 
dark area is platinum
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Depth defect profiling with positron microbeamDepth defect profiling with positron Depth defect profiling with positron microbeammicrobeam

scan direction

positron
microbeam
E = 8 keV

lateral resolution
1 ... 2 mµ

α = 0.6°
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scan width0 1 mm

defect depth
10 mµ

τbulk

τdefect

Energy is constant at 8 keV

Sample is wedged at 0.6°

Defect profile of 10 µm is 
“stretched” to 1 mm

Depth resolution can be 
optimized

First time used to study Rp/2 effect in Si after self-implantation
R. Krause-Rehberg et al., Appl. Phys. Lett. 77 (2000) 3932 
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Defects in high-energy self-implanted Si – The Rp/2 effectDefects in highDefects in high--energy selfenergy self--implanted implanted SiSi –– The RThe Rpp/2 effect/2 effect

after high-energy (3.5 MeV) self-implantation of Si (5 × 1015 cm-2) and RTA 
annealing (900°C, 30s): two new gettering zones appear at Rp an Rp/2     
(Rp – projected range of Si+)
visible by SIMS profiling after intentional Cu contamination
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TEM image by P. Werner, MPI Halle

• at Rp: gettering by interstitial-type 
dislocation loops (formed by excess 
interstitials during RTA)

• no defects visible by TEM at Rp/2
• What type are these defects?

Interstitial  type 
[3,4]

Vacancy type 
[1,2]

[1]  R. A. Brown, et al., J. Appl. Phys. 84 (1998) 2459
[2]  J. Xu, et al., Appl. Phys. Lett. 74 (1999) 997
[3]  R. Kögler, et al., Appl. Phys. Lett. 75 (1999) 1279
[4] A. Peeva, et al., NIM B 161 (2000) 1090



Rp/2 effect investigation RRpp/2 effect investigation /2 effect investigation 
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Cu SIMS-Profil

Both defect regions are gut visible

• vacancy clusters with increasing 
concentration up to 2 µm (Rp/2)

• in Rp region: lifetime τ2=320 ps; 
open volume corresponds to di-
vacancy; defects are stabilized by 
dislocation loops

very good agreement with the SIMS 
profile of in-diffused Cu

R. Krause-Rehberg et al., Appl. Phys. Lett. 77 (2000) 3932 
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Positron lifetime image of fatigue crack with SPMPositron lifetime image of fatigue crack with SPMPositron lifetime image of fatigue crack with SPM

Lifetime measurements around a 
fatigue crack created in technical 
copper was measured

e+ Energy = 16 keV

spatial resolution about 5 µm

two lifetimes were observed:
• 190 ps – dislocations
• 360-420 ps – within 40 µm from 
the crack – vacancy clusters

have been for the first time 
microscopically observed

W. Egger et al., Applied Surface Sci. 194 (2002)
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ConclusionConclusionConclusion

positron annihilation is a sensitive tool for investigation of  vacancy-
like defects in solids
information on type and concentration of vacancies is received
thin layers can be studied by mono-energetic positron beam
improved defect depth profiling is possible by using positron 
microbeams
microscopic observation of defects with scanning positron 
microscope is nowadays possible

This presentation can be found as a This presentation can be found as a pdfpdf--file on our Websitesfile on our Websites:

http://positron.physik.uni-halle.de
http://PositronAnnihilation.net


