

Trapping into a vacancy

V. Bondarenko, Martin-Luther-University, Halle, Germany

012

Negative vacancy

Two-stage trapping model

Temperature dependence

$$K_{d} = K_{v} + \frac{K_{R}}{1 + \frac{\mathbf{m}_{R}}{N\mathbf{h}_{R}} \left[\frac{m_{+}k_{b}T}{2\mathbf{p}\hbar^{2}}\right] \exp\left[-\frac{E_{R}}{k_{b}T}\right]}$$
$$K_{R} = \mathbf{m}_{R}C_{v} / N$$
$$K_{d} = K_{v}(20K) \left[\frac{T}{20K}\right]^{-1/2} + \frac{K_{R}\left[\frac{T}{20K}\right]^{-1/2}}{1 + \frac{\mathbf{m}_{R}}{N\mathbf{h}_{R}} \left[\frac{T}{20K}\right]^{-1/2} \left[\frac{m_{+}k_{b}T}{2\mathbf{p}\hbar^{2}}\right] \exp\left[-\frac{E_{R}}{k_{b}T}\right]}$$

Temperature dependence – negative vacancy

Positron trapping – shallow traps

 negative ions are also positron trapping centers due to small negative Coulomb potential

 term shallow relates to the positron binding energy (few meV).

Therefore the trapping is significant at low temperatures only

• the electron density is not reduced:

Positron shallow traps

Trapping model: negative vacancy + shallow trap

$$\boldsymbol{t}_{av} = \boldsymbol{t}_{d} \frac{(\boldsymbol{l}_{d} + \boldsymbol{K}_{d}) \left[\frac{\boldsymbol{l}_{st}}{\boldsymbol{K}_{st}} + \frac{\boldsymbol{d}_{st}}{\boldsymbol{K}_{st}} \right] + \boldsymbol{l}_{d}}{(\boldsymbol{l}_{b} + \boldsymbol{K}_{d}) \left[\frac{\boldsymbol{l}_{st}}{\boldsymbol{K}_{st}} + \frac{\boldsymbol{d}_{st}}{\boldsymbol{K}_{st}} \right] + \boldsymbol{l}_{st}}$$

7 Parameters (enough to fit a Chinese font):

E_r

E_{st}

 $K_{v}(20K)$

K_r(20K)

 $K_{st}(20K)$

 $\mathbf{m}_{R}(20K)/\mathbf{h}_{R}$

 C_{st}

But there are some constraints: $K_v(20K) = \mathbf{m}_v(20K)C_v / N$ $K_{st}(20K) = \mathbf{m}_{st}(20K)C_{st} / N$ $\mathbf{m}_R(20K) / \mathbf{h}_R = 10^4 - 10^5$ $\mathbf{m}_v(20K) = 1.5 \times 10^{16} s^{-1}$ $\mathbf{m}_{st}(20K) = 5 \times 10^{16} s^{-1}$ (J. Gebauer et al. 1997)

Undoped GaAs – negative vacancy + shallow traps

GaAs:Si - problematic fitting

Sensitivity to the defects charge state?

