Study of semiconductors with positrons

<u>V. Bondarenko</u>, R. Krause-Rehberg Martin-Luther-University Halle-Wittenberg, Halle, Germany

Outlook:

- Introduction
- Positron trapping into defects
- Methods of positron annihilation
 - Positron lifetime spectroscopy
 - Doppler broadening spectroscopy
 - Coincidence Doppler broadening spectroscopy

Introduction

Positron in condensed matter

Positron trapping - Vacancy

Positron trapping - Vacancy

Methods of positron annihilation

Methods of Positron Annihilation

Technique of positron lifetime spectroscopy

Positron Annihilation Lifetime Spectroscopy (PALS)

Positron Annihilation Lifetime Spectroscopy

- model of trapping into a defect
- annihilation from bulk with $\lambda_b = 1/\tau_b \ s^{-1}$
- trapping to vacancy-defect with K s⁻¹
- annihilation from the defect with $\lambda_d = 1/\tau_d$
- two-component lifetime spectrum

$$N(t) = I_1 / \tau_1 \exp(-t / \tau_1) + I_2 / \tau_2 \exp(-t / \tau_2)$$

• analysis by non-linear fitting

Information

- vacancy type (mono-, di-, vacancy cluster) τ_2 – reflects the electron density
- defect concentration C

$$K = \frac{I_2}{I_1} \left(\frac{1}{\tau_b} - \frac{1}{\tau_2} \right) \approx C$$

V. Bondarenko, Martin-Luther-University, Halle, Germany

The Nature of EL2 defect in GaAs

- one of the most frequently studied crystal lattice defects at all
- responsible for semi-insulating properties of GaAs: large technological importance
- is deep donor, compensates shallow acceptors, e.g. C⁻ impurities
- defect shows metastable state after illumination at low temperatures
- IR-absorption of defect disappears during illumination at T < 100 K
- ground state recovers during annealing at about 110 K
- many structural models proposed Dabrowski, Scheffler and Chadi, Chang (1988): simple As_{Ga}-antisite defect responsible
- must show a metastable structural change
 - V. Bondarenko, Martin-Luther-University, Halle, Germany

The Nature of EL2 defect in GaAs

- in metastable state at low temperature: Ga vacancy
- should disappear during annealing at about 110 K
- confirmed by positron lifetime measurements
- kinetics of recovery of ground state is identical for IR- und positron experiment: $E_A = (0.37 \pm 0.02) \text{ eV}$
- evidence of the vacancy in metastable state confirms the proposed structural model

Temperature dependence of positron trapping

Positron trapping – shallow traps

 negative ions are also positron trapping centers due to small negative Coulomb potential

- term "shallow" relates to the positron binding energy (few meV).
- therefore the trapping is significant at low temperatures only
- the electron density is not reduced:

$$\tau_{st} = \tau_b$$

Annihilation-Line Doppler broadening spectroscopy

Doppler effect

electron momentum in propagation direction of 511 keV γ-ray leads to Doppler broadening of annihilation line

Annihilation-Line Doppler broadening spectroscopy

Coincidence Doppler broadening spectroscopy

Doppler coincidence spectroscopy

- background is dramatically reduced by coincident detection of second annihilation $\gamma\text{-quantum}$
- this opens a possibility to investigate the high momentum part of the energy spectrum, i.e. annihilation with core electrons the atoms
- thus the chemical surrounding of a positron trap can be studied

Doppler coincidence spectroscopy

Nature of vacancy complexes in Si and Te doped GaAs

Conclusion

- positron annihilation is a sensitive tool for investigation of vacancy-like defects in semiconductors
- information on type and concentration of vacancies can be obtained
- temperature dependence of positron trapping is governed by the charge state of the defects
- chemical surrounding of the annihilation site can be studied with the help of coincidence Doppler broadening technique
- positively charged defects are invisible for positrons

This presentation can be found as a pdf-file on our Websites:

http://positron.physik.uni-halle.de http://PositronAnnihilation.net

