| Introduction | Making your own Artificial Pulses | Simulating a 4-GS/s Digitizer | Applying a Lowpass Filter | Conclusion |
|--------------|-----------------------------------|-------------------------------|---------------------------|------------|
| 0000         | 000000                            | 00000                         |                           |            |
|              |                                   |                               |                           |            |

# Digital Positron Lifetime: The Influence of Noise

Arnold Krille<sup>1</sup> Wolfgang Anwand<sup>2</sup> Reinhard Krause-Reberg<sup>1</sup>

<sup>1</sup>Department of Physics, Martin-Luther-University Halle-Wittenberg, 06108 Halle, Germany

<sup>2</sup>Institut of Ion Beam Physics, Research Center Dresden-Rossendorf, 01314 Dresden, Germany

Positron Studies of Defects – September 1st to 5th, 2008

| Introduction<br>●000 | Making your own Artificial Pulses | Simulating a 4-GS/s Digitizer | Applying a Lowpass Filter | Conclusion<br>00 |
|----------------------|-----------------------------------|-------------------------------|---------------------------|------------------|
| What is              | s this talk about?                | ?                             |                           |                  |

1 What is this talk about?

#### 2 Making your own Artificial Pulses

Where we give a recipe to simulate digital positron lifetime pulses similar to the ones acquired from digitizing anode pulses from a photomultiplier.

#### **3** Simulating a 4-GS/s Digitizer

 Where we are trying to describe and simulate the reality of 4-GS-8-bit-digitizers and predict the performance of 4-GS-10-bit-digitizers.

#### Applying a Lowpass Filter

• How applying a Butterworth filter (taken from literature) seems to improve the timing resolution by a factor of 2.

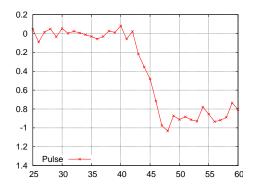
#### 5 What did he say?

| Introduction<br>0000 | Making your own Artificial Pulses | Simulating a 4-GS/s Digitizer | Applying a Lowpass Filter | Conclusion<br>00 |
|----------------------|-----------------------------------|-------------------------------|---------------------------|------------------|
| Analog               | vs. Digital                       |                               |                           |                  |

#### The task

Replace all the (50+ years old) analog electronics with PC, digitizer and mathematics.

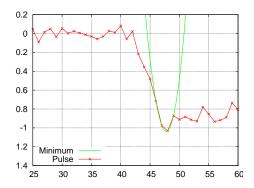
#### Benefits of digital processing:


- + Cheaper (More money left for conferences)
- + Simplier (Less cables cluttering the lab)
- + Better time base (No more calibration)
- + Easy to extent/change (More papers to be written)
  - Less knowledge available
- ? Better timing resolution



| Introduction<br>00●0 | Making your own Artificial Pulses | Simulating a 4-GS/s Digitizer | Applying a Lowpass Filter | Conclusion<br>00 |
|----------------------|-----------------------------------|-------------------------------|---------------------------|------------------|
| Categor              | ry "Doing your ⊦                  | lomework''                    |                           |                  |

- Result of last years SLOPOS11
- Own "real" results are encouraging but not yet optimal
- Simulations needed:
  - to understand what is really going on
  - to see if other digitizers would give better results


| Introduction<br>0000 |     | Making your o |  | 00000 | ng a 4-GS/s |  | 000 | a Lowpass | Conclu<br>00 |  |
|----------------------|-----|---------------|--|-------|-------------|--|-----|-----------|--------------|--|
|                      | A 1 | 1.1           |  |       |             |  | c . |           |              |  |

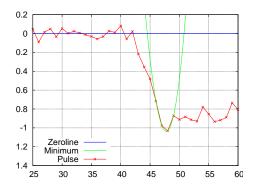


- Find and interpolate the extremum<sup>1</sup>
- Determine the zeroline (and its deviation) before the extremum
- Interpolate the constant fraction point on the rising slope between zeroline and extremum<sup>1</sup>
- 4 Lifetime =

t<sub>Channel 1</sub> - t<sub>Channel 2</sub>

| Introductio<br>000● | n | Making your own<br>000000 | Artificial Pulses | Simulating a 4-GS/s Digitizer | r Applying a Lowpass Filter | Conclusion<br>00 |
|---------------------|---|---------------------------|-------------------|-------------------------------|-----------------------------|------------------|
|                     |   |                           |                   |                               |                             |                  |



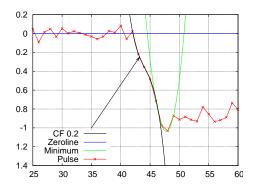

# 1 Find and interpolate the extremum<sup>1</sup>

- 2 Determine the zeroline (and its deviation) before the extremum
- Interpolate the constant fraction point on the rising slope between zeroline and extremum<sup>1</sup>
- 4 Lifetime =

 $t_{Channel \ 1} - t_{Channel \ 2}$ 

<sup>1</sup>By simple polynom interpolation of 3rd order.

| Introduction |     | Making your o<br>000000 | wn Artif | icial Pulses | Simulatir<br>00000 | ng a 4-GS/s | Digitizer | Applying<br>000 |     | ass Filter | Conclusi<br>00 |  |
|--------------|-----|-------------------------|----------|--------------|--------------------|-------------|-----------|-----------------|-----|------------|----------------|--|
|              | A 1 | 1.1                     |          |              |                    |             |           | c               | . • |            |                |  |

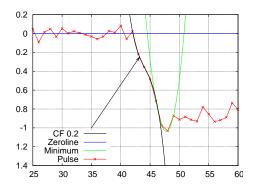



- **1** Find and interpolate the extremum<sup>1</sup>
- 2 Determine the zeroline (and its deviation) before the extremum
- Interpolate the constant fraction point on the rising slope between zeroline and extremum<sup>1</sup>
- 4 Lifetime =

 $t_{Channel \ 1} - t_{Channel \ 2}$ 

<sup>1</sup>By simple polynom interpolation of 3rd order.

| Introductio | on  | Making your o<br>000000 | wn Artif | icial Pulses | Simulatii<br>0000C | ng a 4-GS/s | Digitizer | Applyin<br>000 | g a Lowp | ass Filt | Con<br>OO | lusion |
|-------------|-----|-------------------------|----------|--------------|--------------------|-------------|-----------|----------------|----------|----------|-----------|--------|
|             | A 1 | 1.1                     |          |              |                    |             |           | c              |          |          |           |        |



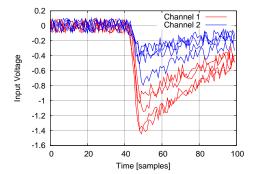

- **1** Find and interpolate the extremum<sup>1</sup>
- 2 Determine the zeroline (and its deviation) before the extremum
- Interpolate the constant fraction point on the rising slope between zeroline and extremum<sup>1</sup>
- 4 Lifetime =

 $t_{Channel \ 1} - t_{Channel \ 2}$ 

<sup>1</sup>By simple polynom interpolation of 3rd order.





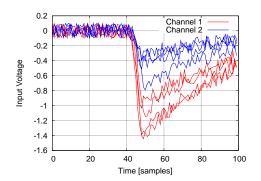

- **1** Find and interpolate the extremum<sup>1</sup>
- 2 Determine the zeroline (and its deviation) before the extremum
- Interpolate the constant fraction point on the rising slope between zeroline and extremum<sup>1</sup>
- 4 Lifetime =

 $t_{Channel \ 1} - t_{Channel \ 2}$ 

Similar to analog constant fraction, called *true constant fraction* by [2].

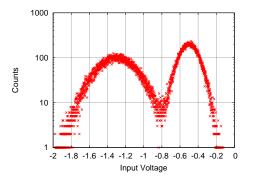
<sup>&</sup>lt;sup>1</sup>By simple polynom interpolation of 3rd order.






Four pulse pairs generated by EPOS Software

#### Side Note

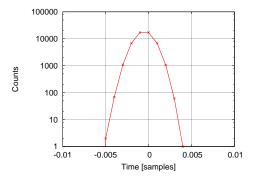

The EPOS Software is gone open-source and looking for users! Get it for free [1].





- Shaped like LSO on Hamamatsu H3378-50
- Risetime like 4 GS/s



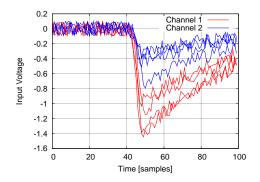



- Shaped like LSO on Hamamatsu H3378-50
- Risetime like 4 GS/s
- Energy distribution like <sup>22</sup>Na

Energy spectrum closely to <sup>22</sup>Na but idealistic.





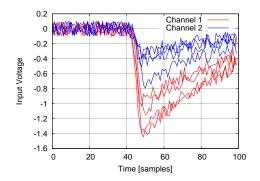



- Shaped like LSO on Hamamatsu H3378-50
- Risetime like 4 GS/s
- Energy distribution like <sup>22</sup>Na
- Gaussian distributed timing

- Shift between pulses is Gaussian distributed.
- Shift of pulses to sampling clock is box distributed.

| 0000         | 000000                            | 000                       | 00         |
|--------------|-----------------------------------|---------------------------|------------|
| Introduction | Making your own Artificial Pulses | Applying a Lowpass Filter | Conclusion |

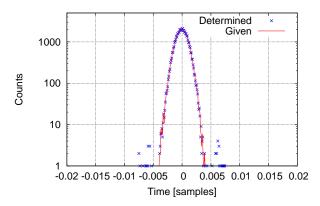
# Making your own Artificial Pulses: Bit-depth




- Shaped like LSO on Hamamatsu H3378-50
- Risetime like 4 GS/s
- Energy distribution like <sup>22</sup>Na
- Gaussian distributed timing
- Variable bit-depth

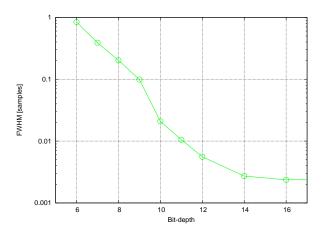
- Possible bit-depths: 1-32 bits
- Native double resolution also possible




# Making your own Artificial Pulses: Adding Noise

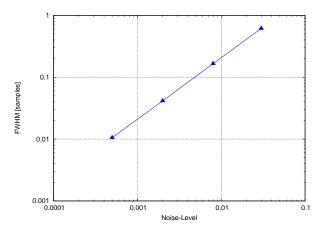


- Shaped like LSO on Hamamatsu H3378-50
- Risetime like 4 GS/s
- Energy distribution like <sup>22</sup>Na
- Gaussian distributed timing
- Variable bit-depth
- White noise added as wanted
- White noise to simulate the uncertainties of the analog electronics.
- Level can be adjusted as wanted.


| Double | Resolution with                   | out Noico                     |                           |            |
|--------|-----------------------------------|-------------------------------|---------------------------|------------|
| 0000   | 000000                            | ●0000                         | 000                       | 00         |
|        | Making your own Artificial Pulses | Simulating a 4-GS/s Digitizer | Applying a Lowpass Filter | Conclusion |





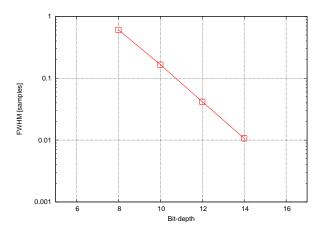

- No noise, native double resolution
- Given timing distribution: FWHM = 0.0023582 samples  $\equiv$  0.589 ps
- Given distribution  $(-) \equiv$  determined resolution  $(\times)$ 
  - $\Rightarrow$  Method works

| Introduction | Making your own Artificial Pulses | Simulating a 4-GS/s Digitizer | Applying a Lowpass Filter | Conclusion |
|--------------|-----------------------------------|-------------------------------|---------------------------|------------|
| 0000         | 000000                            | ○●○○○                         |                           | 00         |
| Reduci       | ng the Bit-depth                  |                               |                           |            |



- Reduced bit-depth, no noise
- Timing resolution at 8-bit:  $0.202 \text{ samples} \equiv 50 \text{ ps}$

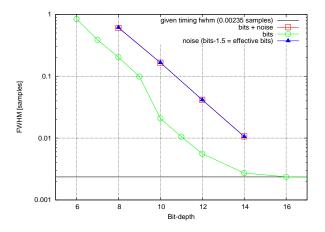
|         | Making your own Artificial Pulses | Simulating a 4-GS/s Digitizer | Applying a Lowpass Filter | Conclusion |
|---------|-----------------------------------|-------------------------------|---------------------------|------------|
|         |                                   | 00000                         |                           |            |
| Noise o | of Effective Bits                 |                               |                           |            |




Native double resolution, noise according to effective bits added

Strong log-log dependency of timing resolution and noise level.

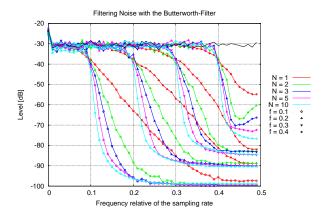
| Maine a | Naiss and Dadward Dit doubh       |                               |                           |            |  |  |  |
|---------|-----------------------------------|-------------------------------|---------------------------|------------|--|--|--|
| 0000    | 000000                            | 00000                         | 000                       | 00         |  |  |  |
|         | Making your own Artificial Pulses | Simulating a 4-GS/s Digitizer | Applying a Lowpass Filter | Conclusion |  |  |  |


# Noise and Reduced Bit-depth



- Reduced bit-depth and noise from effective bits
- Timing resolution at 8-bit:  $0.612 \text{ samples} \equiv 153 \text{ ps}$

| Finally | Finally Comparing the results     |                               |                           |            |  |  |  |
|---------|-----------------------------------|-------------------------------|---------------------------|------------|--|--|--|
| 0000    | 000000                            | 00000                         | 000                       | 00         |  |  |  |
|         | Making your own Artificial Pulses | Simulating a 4-GS/s Digitizer | Applying a Lowpass Filter | Conclusion |  |  |  |






- Noise from effective bits has most influence
- Resulting timing resolutions: 8-bit: 153 ps, 10-bit: 41 ps

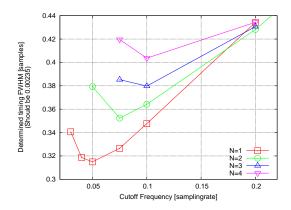

|         | Making your own Artificial Pulses | Simulating a 4-GS/s Digitizer | Applying a Lowpass Filter | Conclusion |
|---------|-----------------------------------|-------------------------------|---------------------------|------------|
| 0000    | 000000                            | 00000                         | 000                       | 00         |
| Applyir | og a Lownass Filt                 | or                            |                           |            |

## Applying a Lowpass Filter



- Butterworth lowpass (implementation taken from literature [3])
- Order and cutoff frequency can be set

| Introduction<br>0000 | Making your own Artificial Pulses | Simulating a 4-GS/s Digitizer | Applying a Lowpass Filter<br>O●O | Conclusion<br>OO |
|----------------------|-----------------------------------|-------------------------------|----------------------------------|------------------|
| Applyi               | ng a Lownass Filt                 | or                            |                                  |                  |




Upper row Original signals as generated Lower row Filtered by lowpass

ъ

| Introduction | Making your own Artificial Pulses | Simulating a 4-GS/s Digitizer | Applying a Lowpass Filter | Conclusion |
|--------------|-----------------------------------|-------------------------------|---------------------------|------------|
| 0000         | 000000                            |                               | 00●                       | OO         |
| Annhuin      | a a Lawrace Eilt                  | or Doculto                    |                           |            |

## Applying a Lowpass Filter: Results



#### Best Timing Resolution

N = 1 and f = 0.05 has FWHM of 0.31 samples  $\equiv$  75 ps.

| Introduction<br>0000 | Making your own Artificial Pulses<br>000000 | Simulating a 4-GS/s Digitizer | Applying a Lowpass Filter | Conclusion<br>●O |
|----------------------|---------------------------------------------|-------------------------------|---------------------------|------------------|
| Compa                | rison of the Resu                           | lts                           |                           |                  |

| Method                             | Relative Timing<br>FWHM [samples] | 4-GS/s "real"<br>FWHM [ps] |
|------------------------------------|-----------------------------------|----------------------------|
| Vertical quantization only (8-bit) | 0.202 samples                     | 50 ps                      |
| Noise of effective 6.5 bit         | 0.612 samples                     | 153 ps                     |
| Butterworth-Lowpass f=0.05 N=1     | 0.314 samples                     | 75 ps                      |

#### Comparing the results.

Lowpass filtering can almost remove the effect of the noise added from the analog electronics.

 $\Rightarrow$  All with simple polynom interpolation for energy and constant fraction.

| Introduction<br>0000     | Making your own Artificial Pulses | Simulating a 4-GS/s Digitizer | Applying a Lowpass Filter | Conclusion<br>O |
|--------------------------|-----------------------------------|-------------------------------|---------------------------|-----------------|
| Literature, Links, Thank |                                   | ks                            |                           |                 |
|                          |                                   |                               |                           |                 |

#### Thanks for your attention!

Get the slides from [4].

#### [1] positron.physik.uni-halle.de/epos/software.

[2] F. Bečvář.

Methodology of positron lifetime spectroscopy: Present status and perspectives. *Nuclear Instruments and Methods in Physics Research B*, 261:871–874, 2007.

[3] S. D. Stearns.

Digital Signal Analysis. Hayden Book Company Inc., 1975.

[4] positron.physik.uni-halle.de.